It is a great pleasure to publish the 30th volume of the Institute for Chemical Research (ICR) Annual Report. ICR was established as the first research institute of Kyoto University in 1926, with the founding philosophy “To Excel in the Investigation of Basic Principles of Chemistry and Their Applications.” Since 1994, ICR Annual Report has been published annually to disseminate ICR’s current activities worldwide. We currently have 120 faculty members, 200 graduate students, including 50 from abroad, and 60 researchers. These scientists are grouped into 30 laboratories divided into five research divisions—Synthetic Chemistry, Materials Chemistry, Biochemistry, Environmental Chemistry, and Multidisciplinary Chemistry—and three research centers—Advanced Research Center for Beam Science, International Research Center for Elements Science, and Bioinformatics Center. The laboratories are diversely affiliated with the graduate schools of science, engineering, agriculture, pharmaceutical sciences, medicine, and informatics.

The research of ICR encompasses a wide range of scientific disciplines, including physics, biology, and informatics as well as chemistry. ICR members conduct cutting-edge research not only in fields of their own specific disciplines but also in interdisciplinary and innovative fields. Some of outstanding research achievements in 2023 are as follows: 1) Unusual Nuclear Exchange within a Germanium-Containing Aromatic Ring that Results in Germanium Atom Transfer; 2) Synthesis of Tertiary Alkylphosphonate Oligonucleotides through Light-Driven Radical-Polar Crossover Reactions; 3) Location-Selective Immobilisation of Single-Atom Catalysts on the Surface or within the Interior of Ionic Nanocrystals Using Coordination Chemistry; 4) Magnetization Control of Zero-Field Intrinsic Superconducting Diode Effect; 5) Synergistic Surface Modification of Tin–Lead Perovskite Solar Cells; 6) Generation of Third-Harmonic Spin Oscillation from Strong Spin Precession Induced by Terahertz Magnetic Near Fields; 7) Genomic Adaptation of Giant Viruses in Polar Oceans. Other distinctive achievements were presented also in the 123rd ICR Annual Symposium on December 1, 2023.

ICR collaborates with other research institutions on projects including MEXT Inter-University Collaborative Project “Integrated Consortium on Chemical Synthesis”, MEXT Large-scale Scientific Research Project “Spintronics Research Network of Japan”, and Research Unit for Realization of Sustainable Society in the Kyoto University Research Coordination Alliance. We have also been engaged in over 60 international collaborations with overseas universities and research institutions. In 2018, based on our strong global activity in chemistry-oriented fields, ICR was certified by MEXT as an International Joint Usage/Research Center. To encourage young researchers we have established several programs to support research and postgraduate education, including an in-house annual grant system, “ICR Grant for Promoting Integrated Research.” These collaborative achievements underline our commitment to promoting ICR as a global research hub in chemistry-related fields.

The world around us is undergoing a wave of changes. The growing economy has exposed various global problems including climate change and social inequity. For a just and sustainable society, science and technology must become a credible beacon of light. ICR contributes to this goal by providing leadership and expertise in scientific research, fostering multidisciplinary, chemistry-related communities, and developing new and technologically significant innovations. We hope this Annual Report will serve to update you on the progress of our research activities and globalization. We appreciate your continued encouragement and support.

January 2024

AOYAMA, Takashi
Director
Recently Published in *Nature*!
“Mirusviruses Link Herpesviruses to Giant Viruses”

On April 19th, our work was published in *Nature*. In this work, we discovered a novel group of large DNA viruses dubbed “Mirusviricota”. Most of double stranded DNA viruses are classified into one of two realms: *Varidnaviria*, which includes giant viruses, and *Duplodnaviria*, which includes herpesviruses causing diseases in animals. These two realms have been considered evolutionarily unrelated. However, the newly discovered mirusviruses possess features of both realms. Genes of “informational module” for genome replication and gene expression were similar to those of *Varidnaviria*, while genes of “virion module” that encode structural proteins were similar to those of *Duplodnaviria*. This mosaic feature of mirusviruses suggests that herpesviruses evolved from tailed bacterial viruses via ancestral protist-infecting viruses, namely the ancestors of the modern day mirusviruses and herpesviruses. Furthermore, gene transfers of “informational genes” between the two realms probably played crucial roles in their evolution. Mirusviruses appear to be prevalent and abundant in the sea and likely infect a variety of protists. However, they were discovered by bioinformatics analyses of marine metagenomic data, and there are currently no cultured viruses from this group of viruses. This work was achieved by a collaboration with groups of scientists in France and Denmark.

10th Pacific Symposium on Radical Chemistry (PSRC-10)

PSRC-10 was held at Obaku Plaza, Uji Campus. Since its establishment in 2004, the PSRC has aimed to promote the development of organic radical chemistry in the world and mutual exchanges among researchers. A total of 186 researchers from 18 countries gathered for 55 oral research presentations (3 keynote lectures, 28 special invited lectures, and 24 invited lectures) and 91 poster presentations. Recent research results in a wide range of fields were presented, including reaction development using photo-redox catalysts, precise polymer synthesis, and material creation using radicals, and design, synthesis, and theory of complex molecules in which multiple radicals interact with each other. The participants were able to interact with each other in a relaxed atmosphere. Twelve students and post-doctoral fellows were selected as poster award winners and presented with awards at the closing ceremony.

Through these activities, we believe that we have successfully achieved the original purpose of this conference, which was to further develop research in organic radical chemistry and to provide a forum for international exchange among the research community. We would like to express our deep appreciation for the cooperation and support not only of the conference participants, but also of all the people involved.
New Collaboration Project Starts
Memorandum of Understanding Signed between Sungkyunkwan University’s Institute for Energy Science and Technology and ICR

On June 5, 2023, a delegation from Sungkyunkwan University (SKKU) led by Prof. Nam-Gyu Park, the director of SKKU’s Institute of Energy Science and Technology, visited ICR. The purpose of the visit was to participate in the 1st Kyoto-SKKU Workshop, which was held in cooperation with Prof. Wakamiya’s laboratory. During the workshop, a Memorandum of Understanding (MOU) was signed between the Institute of Energy Science and Technology, SKKU, and ICR, Kyoto University (Director, Prof. Takashi Aoyama) to encourage interdepartmental academic exchange. A collaborative project on perovskite solar cells was launched with the support of the International Collaborative Research Program of the Institute for Chemical Research (ICR), Kyoto University, and the Korean National Research Foundation (KNRF). This initiative led to the establishment of the SKKU-Kyoto University Perovskite International Research Collaboration Center (PIRCC) within the Institute of Energy Science and Technology at SKKU in Korea.

ICR Hosted Four Student Awardees from the Philippines

On the occasion of Talent-Spot 2023 Manila held in January 2023, ICR Travel Award was presented to 4 top-performing students out of 17 student candidates from the Philippines. In March 2023, the awardees, two of them were from University of the Philippines Diliman, and one each of the other two were from University of Santo Tomas and De La Salle University.

They were invited to participate in a week-long research training at the laboratory of their utmost interest at ICR, Kyoto University. At the conclusion of the training program, each of the awardees gave a short presentation of their research experience at ICR. Through the relaxed and open discussion, the students interacted with young researchers and faculty members of ICR to promote networking. One of the students, Matthew Denwell Herrera, will join an ICR laboratory as a MEXT scholar and pursue a Master’s degree from Kyoto University.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td>ICR News 2023</td>
<td>iv</td>
</tr>
<tr>
<td>ORGANIZATION</td>
<td>1</td>
</tr>
<tr>
<td>TOPICS AND INTRODUCTORY COLUMNS OF LABORATORIES</td>
<td>3</td>
</tr>
<tr>
<td>Division of Synthetic Chemistry</td>
<td></td>
</tr>
<tr>
<td>Organoelement Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Structural Organic Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>Synthetic Organic Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>Advanced Inorganic Synthesis</td>
<td>10</td>
</tr>
<tr>
<td>Division of Materials Chemistry</td>
<td></td>
</tr>
<tr>
<td>Chemistry of Polymer Materials</td>
<td>12</td>
</tr>
<tr>
<td>Polymer Controlled Synthesis</td>
<td>14</td>
</tr>
<tr>
<td>Inorganic Photonics Materials</td>
<td>16</td>
</tr>
<tr>
<td>Nanospintronics</td>
<td>18</td>
</tr>
<tr>
<td>Division of Biochemistry</td>
<td></td>
</tr>
<tr>
<td>Biofunctional Design-Chemistry</td>
<td>20</td>
</tr>
<tr>
<td>Chemistry of Molecular Biocatalysts</td>
<td>22</td>
</tr>
<tr>
<td>Molecular Biology</td>
<td>24</td>
</tr>
<tr>
<td>Chemical Biology</td>
<td>26</td>
</tr>
<tr>
<td>Division of Environmental Chemistry</td>
<td></td>
</tr>
<tr>
<td>Molecular Materials Chemistry</td>
<td>28</td>
</tr>
<tr>
<td>Hydrospheric Environment Analytical Chemistry</td>
<td>30</td>
</tr>
<tr>
<td>Chemistry for Functionalized Surfaces</td>
<td>32</td>
</tr>
<tr>
<td>Molecular Microbial Science</td>
<td>34</td>
</tr>
<tr>
<td>Division of Multidisciplinary Chemistry</td>
<td></td>
</tr>
<tr>
<td>Polymer Materials Science</td>
<td>36</td>
</tr>
<tr>
<td>Molecular Rheology</td>
<td>38</td>
</tr>
<tr>
<td>Molecular Aggregates</td>
<td>40</td>
</tr>
<tr>
<td>Advanced Research Center for Beam Science</td>
<td></td>
</tr>
<tr>
<td>Particle Beam Science</td>
<td>42</td>
</tr>
<tr>
<td>Laser Matter Interaction Science</td>
<td>44</td>
</tr>
<tr>
<td>Electron Microscopy and Crystal Chemistry</td>
<td>46</td>
</tr>
<tr>
<td>Atomic and Molecular Structures</td>
<td>48</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>International Research Center for Elements Science</td>
<td></td>
</tr>
<tr>
<td>Synthetic Organotransformation</td>
<td>50</td>
</tr>
<tr>
<td>Advanced Solid State Chemistry</td>
<td>52</td>
</tr>
<tr>
<td>Organometallic Chemistry</td>
<td>54</td>
</tr>
<tr>
<td>Nanophotonics</td>
<td>56</td>
</tr>
<tr>
<td>Bioinformatics Center</td>
<td></td>
</tr>
<tr>
<td>Chemical Life Science</td>
<td>58</td>
</tr>
<tr>
<td>Mathematical Bioinformatics</td>
<td>60</td>
</tr>
<tr>
<td>Bio-knowledge Engineering</td>
<td>62</td>
</tr>
<tr>
<td>HAKUBI RESEARCHERS’ ACTIVITIES IN ICR</td>
<td>65</td>
</tr>
<tr>
<td>ACTIVITIES OF INTERNATIONAL JOINT USAGE/RESEARCH CENTER</td>
<td>67</td>
</tr>
<tr>
<td>iJURC Cooperative Research Subjects 2023</td>
<td>68</td>
</tr>
<tr>
<td>iJURC Publications (Selected Examples)</td>
<td>75</td>
</tr>
<tr>
<td>VISITING PROFESSORS’ ACTIVITIES IN ICR</td>
<td>77</td>
</tr>
<tr>
<td>PERSONAL</td>
<td>79</td>
</tr>
<tr>
<td>Retirement</td>
<td>80</td>
</tr>
<tr>
<td>Awards</td>
<td>82</td>
</tr>
<tr>
<td>Poster Awards</td>
<td>89</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>94</td>
</tr>
<tr>
<td>INTERNATIONAL RESEARCH COLLABORATIONS</td>
<td>106</td>
</tr>
<tr>
<td>SELECTED GRANTS</td>
<td>108</td>
</tr>
<tr>
<td>THESES</td>
<td>118</td>
</tr>
<tr>
<td>THE 123RD ICR ANNUAL SYMPOSIUM</td>
<td>120</td>
</tr>
<tr>
<td>SEMINARS</td>
<td>123</td>
</tr>
<tr>
<td>MEETINGS AND SYMPOSIA</td>
<td>126</td>
</tr>
<tr>
<td>INDEX</td>
<td>127</td>
</tr>
<tr>
<td>NAME INDEX</td>
<td>128</td>
</tr>
<tr>
<td>KEYWORD INDEX</td>
<td>131</td>
</tr>
<tr>
<td>Abbreviations used in the columns</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Prof Em</td>
<td>Professor Emeritus</td>
</tr>
<tr>
<td>Prof</td>
<td>Professor</td>
</tr>
<tr>
<td>Vis Prof</td>
<td>Visiting Professor</td>
</tr>
<tr>
<td>Assoc Prof</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>Vis Assoc Prof</td>
<td>Visiting Associate Professor</td>
</tr>
<tr>
<td>Senior Lect</td>
<td>Senior Lecturer</td>
</tr>
<tr>
<td>Assist Prof</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>Lect (pt)</td>
<td>Lecturer (part-time)</td>
</tr>
<tr>
<td>Specially Appointed Prof</td>
<td>Specially Appointed Professor</td>
</tr>
<tr>
<td>Program-Specific Assoc Prof</td>
<td>Program-Specific Associate Professor</td>
</tr>
<tr>
<td>Program-Specific Senior Lect</td>
<td>Program-Specific Senior Lecturer</td>
</tr>
<tr>
<td>Program-Specific Assist Prof</td>
<td>Program-Specific Assistant Professor</td>
</tr>
<tr>
<td>Techn Staff</td>
<td>Technical Staff</td>
</tr>
<tr>
<td>Program-Specific Res</td>
<td>Program-Specific Researcher</td>
</tr>
<tr>
<td>Proj Res</td>
<td>Project Researcher</td>
</tr>
<tr>
<td>Support Staff</td>
<td>Support Staff</td>
</tr>
<tr>
<td>Assist Res Staff</td>
<td>Assistant Research Staff</td>
</tr>
<tr>
<td>Assist Techn Staff</td>
<td>Assistant Technical Staff</td>
</tr>
<tr>
<td>Guest Scholar</td>
<td>Guest Scholar</td>
</tr>
<tr>
<td>Guest Res Assoc</td>
<td>Guest Research Associate</td>
</tr>
<tr>
<td>SPD (JSPS)</td>
<td>Special Post-Doctoral Research Fellow</td>
</tr>
<tr>
<td>PD</td>
<td>Post-Doctoral Research Fellow</td>
</tr>
<tr>
<td>Res</td>
<td>Researcher</td>
</tr>
<tr>
<td>Res Support Staff</td>
<td>Research Support Staff</td>
</tr>
<tr>
<td>RF</td>
<td>Research Fellow</td>
</tr>
<tr>
<td>D 1–3</td>
<td>Doctoral Course (Program) 1–3</td>
</tr>
<tr>
<td>M 1–2</td>
<td>Master’s Course (Program) 1–2</td>
</tr>
<tr>
<td>RS</td>
<td>Research Student</td>
</tr>
<tr>
<td>UG</td>
<td>Undergraduate Student</td>
</tr>
<tr>
<td>D Sc</td>
<td>Doctor of Science</td>
</tr>
<tr>
<td>D Eng</td>
<td>Doctor of Engineering</td>
</tr>
<tr>
<td>D Agr</td>
<td>Doctor of Agricultural Science</td>
</tr>
<tr>
<td>D Pharm Sc</td>
<td>Doctor of Pharmaceutical Science</td>
</tr>
<tr>
<td>D Med Sc</td>
<td>Doctor of Medical Science</td>
</tr>
<tr>
<td>D Inf</td>
<td>Doctor of Informatics</td>
</tr>
<tr>
<td>D Human & Envirnmnt. Studies</td>
<td>Doctor of Human and Environmental Studies</td>
</tr>
<tr>
<td>D Energy Sc</td>
<td>Doctor of Energy Science</td>
</tr>
<tr>
<td>Ph D</td>
<td>Doctor of Philosophy</td>
</tr>
<tr>
<td>(pt)</td>
<td>part-time</td>
</tr>
</tbody>
</table>
ORGANIZATION
Institute for Chemical Research

5 Divisions and 3 Centers

Research Divisions

- **Division of Synthetic Chemistry**
 - Organoelement Chemistry
 - Structural Organic Chemistry
 - Synthetic Organic Chemistry
 - Advanced Inorganic Synthesis

- **Division of Materials Chemistry**
 - Chemistry of Polymer Materials
 - Polymer Controlled Synthesis
 - Inorganic Photonics Materials
 - Nanospintronics

- **Division of Biochemistry**
 - Biofunctional Design-Chemistry
 - Chemistry of Molecular Biocatalysts
 - Molecular Biology
 - Chemical Biology

- **Division of Environmental Chemistry**
 - Molecular Materials Chemistry
 - Hydrospheric Environment Analytical Chemistry
 - Chemistry for Functionalized Surfaces
 - Molecular Microbial Science

- **Division of Multidisciplinary Chemistry**
 - Polymer Materials Science
 - Molecular Rheology
 - Molecular Aggregates

Research Centers

- **Advanced Research Center for Beam Science**
 - Particle Beam Science
 - Laser Matter Interaction Science
 - Electron Microscopy and Crystal Chemistry
 - Atomic and Molecular Structures

- **International Research Center for Elements Science**
 - Synthetic Organotransformation
 - Advanced Solid State Chemistry
 - Organometallic Chemistry
 - Nanophotonics
 - Structural Organic Chemistry
 - Biofunctional Design-Chemistry

- **Bioinformatics Center**
 - Chemical Life Science
 - Mathematical Bioinformatics
 - Bio-knowledge Engineering
 - GenomeNet Project Management Office

Visiting Divisions
- International Joint Usage/Research Center
- Supercomputer System
- Low Temperature Laboratory
TOPICS AND INTRODUCTORY COLUMNS OF LABORATORIES
Scope of Research

π-Extended aromatic compounds such as higher acenes and porphyrins are attractive as organic functional materials. In particular, we focus on the control of thin-film structure by self-assembly of the materials to investigate the correlation between packing structure and charge carrier mobility. We are also interested in the compounds including heavy main group elements to elucidate the similarities and differences in structures and reactivities between organic compounds and the corresponding heavier congeners.

KEYWORDS
Organic Semiconductor Aromatic Compound
Self-Assembly Main Group Element
Reactive Intermediate

Recent Selected Publications
Exploration of Alkyl Group Effects on the Molecular Packing of 5,15-Disubstituted Tetrabenzoporphyrins toward Efficient Charge-Carrier Transport

The high design flexibility of organic semiconductors should lead to diverse and complex electronic functions. However, currently available high-performance organic semiconductors are limited in variety; most of p-type materials are based on thienoacenes or related one-dimensionally (1D) extended π-conjugated systems. In an effort to expand the diversity of organic semiconductors, we are working on the development of tetrabenzoporphyrin (BP) derivatives as active-layer components of organic electronic devices. BP derivatives can afford field-effect hole mobilities of >4 cm² V⁻¹ s⁻¹ and the resulting thin films show high thermal stability wherein the field-effect hole mobility stays above 1 cm² V⁻¹ s⁻¹ even after heating at 160 °C in air, reflecting the tight packing of large BP units. These findings will serve as a good basis for extracting the full potential of 2D extended π-frameworks and thus for increasing the structural or functional diversities of high-performance organic semiconductors.

Figure 1. Packing structure of 5,15-bis(n-octyldimethylsilylethynyl) tetrabenzoporphyrin in the solution processed thin film.

On-Surface Light-Induced Generation of Higher Acenes and Elucidation of Their Open-Shell Character

Acenes are an important class of polycyclic aromatic hydrocarbons which have recently gained exceptional attention due to their potential as functional organic semiconductors. Fundamentally, they are important systems to study the convergence of physico-chemical properties of all-carbon sp²-frameworks in the one-dimensional limit; and by virtue of having a zigzag edge topology they also provide a fertile playground to explore magnetism in graphenic nanostructures. We have demonstrated the on-surface formation of heptacene and nonacene via visible-light-induced photo-dissociation of α-bisdiketone precursors on an Au(111) substrate under ultra-high vacuum conditions. Through combined scanning tunneling microscopy/spectroscopy and non-contact atomic force microscopy investigations, we provide insight into the chemical and electronic structure of these elusive compounds.

Figure 2. On-surface synthesis of nonacene from photoprecursor and its STM, AFM, and STS images.

Development of Germanium Atom Transfer Reaction

In organic synthesis, the synthetic strategy relies on the division of the target molecule into simpler substructures, the feasibility of which depends on the availability of the necessary building blocks. A single atom is the simplest and most ideal building block for all molecules, but for most elements, obtaining individual atoms for synthesis is impractical. We have demonstrated that single atomic germanium can be introduced into various molecules by taking advantage of the reactivity of the germabenzenyl anion, in which the anionic carbon of the phenyl anion is replaced by germanium. The method discovered in this research enables the controlled synthesis of molecules with “naked” germanium and is expected to lead to the development of various functional materials involving germanium.

Figure 3. Germanium atom transfer reaction utilizing a germabenzenyl anion.
Division of Synthetic Chemistry
– Structural Organic Chemistry –

Prof MURATA, Yasujiro (D Eng)
Assoc Prof HIROSE, Takashi (D Eng)
Assist Prof HASHIKAWA, Yoshifumi (D Eng)

Students
HUANG, Guanglin (D4)
ZHANG, Zheng (D3)
HU, Weizhe (D3)
GU, Jiajian (D2)
LIU, Zhibo (D1)
SHIMURA, Reo (UG)

Guest Res Assoc
CHAOLUMEN (Ph D) Inner Mongolia University, P. R. China, 1 August 2023–22 August 2023

Scope of Research

Fundamental studies are being conducted for the creation of new functional π-systems with novel structures and properties, and for evaluation of their application as organic semiconducting materials for photovoltaic and electroluminescent devices. The major subjects are: 1) organochemical transformation of fullerenes C₆₀ and C₇₀, specifically organic synthesis of endohedral fullerenes by the technique of molecular surgery; 2) generation of ionic fullerene species and their application for the synthesis of functional material; 3) synthesis of new carbon-rich materials by the use of transition metal complex; and 4) creation of new functional π-materials with unique photoelectric properties.

Recent Selected Publications

KEYWORDS
π-Conjugated Systems
Endohedral Fullerenes
Functional Materials
Helical Structures
Radical Species
Near-Infrared-Absorbing Chiral Open-[60] Fullerenes

[60] Fullerene is an achiral molecular nanocarbon with icosahedral (Ih) symmetry while it could attain an inherent chirality depending upon a functionalization pattern. The conventional chiral induction of C₆₀ relies mainly upon a multiple addition, thus affording a mixture of achiral and chiral isomers. In most cases, however, their chiral function would be largely offset by pseudo-mirror plane(s). These are major obstacles to proceed further study on fullerene chirality and yet leave its understanding elusive. In this study, we developed a carbene-mediated synthesis of C_{1-symmetric} open-[60]fullerenes showing an intense far-red to near-infrared absorption. The large dissymmetry factor of |<i>g</i>_{abs}| = 0.12 was confirmed at <i>λ</i> = 820 nm for circular dichroism in benzonitrile. This is, in general, unachievable by other small chiral organic molecules, demonstrating the potential usage of open-[60]fullerenes as novel types of chiral chromophores.

Design of Magnetically-Allowed Electronic Transitions by Heteroatom Embedding for an Efficient Circularly Polarized Luminescence (CPL)

Design of excellent circularly polarized luminescence (CPL) emitters requires chiral molecules with large transition magnetic dipole moments (TMDM, |<i>m</i>|). In this work [5]-, [7]-, and [9]helicene derivatives with 2,1,3-thiadiazole rings at both ends were designed and synthesized. We revealed that the [9]helicene derivative (TD[9]H) showed an excellent CPL with a large <i>g</i>_{lum} of +0.04 at 520 nm in toluene, which was significantly larger than that of unsubstituted carbo[7]helicene (<i>g</i>_{lum} = +0.008). Density functional theory (DFT) calculations suggested that the remarkable <i>g</i>_{lum} of TD[9]H was attributed to the magnetically allowed transition with a large TMDM (|<i>m</i>| = 2.3 × 10^{−20} erg G^{−1}) for the S₁→S₀ transition.
Our group has been carrying out innovative research on the radical-based organic synthesis by designing catalysts and chemical reactions as well as molecules. Our current research projects include (1) radical-mediated organocatalysis such as N-heterocyclic carbene catalysis or organophotoredox catalysis; (2) radical modification of nucleic acids; and (3) molecular imaging based on boron chemistry.

Recent Selected Publications

Synthesis of Tertiary Alkylphosphonate Oligonucleotides through Light-Driven Radical-Polar Crossover Reactions

Chemical modification of nucleotides can improve the metabolic stability and target specificity of oligonucleotide therapeutics, and alkylphosphonates have been employed as charge-neutral replacements for naturally-occurring phosphodiester backbones in these compounds. However, at present, the alkyl moieties that can be attached to phosphorus atoms in these compounds are limited to methyl groups or primary/secondary alkyls, and such alkylphosphonate moieties can degrade during oligonucleotide synthesis. The present work demonstrates the tertiary alkylation of the phosphorus atoms of phosphites bearing two 2'-deoxynucleosides. This process utilizes a carbocation generated via a light-driven radical-polar crossover mechanism. This protocol provides tertiary alkylphosphonate structures that are difficult to synthesize using existing methods. The conversion of these species to oligonucleotides having charge-neutral alkylphosphonate linkages through a phosphoramidite-based approach was also confirmed in this study.

N-Heterocyclic Carbene- and Organic Photoredox-Catalysed meta-Selective Acylation of Electron-Rich Arenes

meta-Selective functionalization of electron-rich arenes provides a complementary route to that of traditional organic synthesis. In classical electrophilic aromatic substitution reactions of electron-donating group-pendant arenes, C–H functionalization occurs at the ortho- or para-positions. There have been numerous efforts to overcome this selectivity, and various synthetic methods have been developed, typically using transition metal catalysis. Here we report a combined N-heterocyclic carbene- and organic photoredox-catalysed method for meta-selective acylation of electron-rich arenes, using acyl imidazoles as acylating reagents. This approach proceeds without directing groups or steric factors required in transition metal-catalysed processes, resulting in the opposite regioselectivity to conventional approaches such as Friedel–Crafts acylation. Mechanistic studies reveal the process involves a sequence of single-electron oxidation of an electron-rich arene followed by the radical–radical coupling between a ketyl radical and an arene radical cation.

Radical Caging Strategy for Cholinergic Optopharmacology

Photo-caged methodologies have been indispensable for elucidating the functional mechanisms of pharmacologically active molecules at the cellular level. A photo-triggered removable unit enables control of the photo-induced expression of pharmacologically active molecular function, resulting in a rapid increase in the concentration of the bioactive compound near the target cell. However, caging the target bioactive compound generally requires specific heteroatom-based functional groups, limiting the types of molecular structures that can be caged. We have developed an unprecedented methodology for caging/uncaging on carbon atoms using a unit with a photo-cleavable carbon–boron bond. The caging/uncaging process proceeds without directing groups or steric factors required in transition metal-catalysed processes, resulting in the opposite regioselectivity to conventional approaches such as Friedel–Crafts acylation. Using this radical caging strategy to cage previously unprocessable bioactive molecules, we have photografted molecules with no general labeling sites, including acetylcholine, an endogenous neurotransmitter. Caged acetylcholine provides an unconventional tool for optopharmacology to clarify neuronal mechanisms on the basis of photo-regulating acetylcholine localization. We demonstrated the utility of this probe by monitoring uncaging in HEK cells expressing a biosensor to detect ACh on the cell surface, as well as Ca^{2+} imaging in Drosophila brain cells (ex vivo).
We are focusing on the precise synthesis of inorganic nanoparticles by controlling the primary (size, shape, composition, etc.) and secondary (spatial arrangement) structures to tune properties such as electron confinement, carrier oscillation, spin, and catalysis. These high-quality inorganic nanoparticles are applied to both high-performance nanodevices (e.g., single electron transistor, plasmon waveguide, and nanocomposite magnet) and photo-energy conversion materials (e.g., overall water splitting and solar cell).

KEYWORDS

Inorganic Nanomaterials
Quantum Dots
Plasmonics
Oxidation Reduction Reactions
Photocatalysts

Recent Selected Publications

Location-Selective Immobilization of Single-Atom Catalysts on the Surface or Within the Interior of Ionic Nanocrystals Using Coordination Chemistry

Single-atom catalysts dispersed on support materials show excellent heterogeneous catalytic properties that can be tuned using the interactions between the single atoms and the support. Such interactions depend on whether the single atoms are located on the surface or within the interior of the support. However, little is known about immobilising single atoms on the surface or within the interior of supports deliberately and selectively. Herein, such location-selective placement of single atoms is achieved through the choice of metal complex precursor, solvent, and work-up procedure.

(Figure 1) Using CdSe nanoplatelets as a support, a cis-[PtCl₂(SO(CH₃)₂)]₂ precursor in an aprotic solvent exclusively attaches single Pt atoms on the surface of the support. In contrast, a [PtCl₄]²⁻ precursor in a protic solvent followed by amine treatment places 60% of the single Pt atoms inside the support by cation substitution. The surface-adsorbed single Pt atoms show higher stability in photocatalytic hydrogen evolution than the substituted ones, and the preclusion of substitution as internal Pt maximises the activity. Thus, this study provides a viable strategy for the structurally precise synthesis and design of single-atom catalysts.

Control over Ligand-Exchange Positions of Thiolate-Protected Gold Nanoclusters Using Steric Repulsion of Protecting Ligands

Organic ligands on gold nanoclusters play important roles in regulating the structures of gold cores. However, the impact of the number and positions of the protecting ligands on gold-core structures remains unclear. We isolated thiolate-protected Au₂₅ cluster anions, [Au₂₅(SC₂Ph)₁₇(Por)]⁻ and [Au₂₅(SC₂Ph)₁₆(Por)]⁻ (SC₂Ph = 2-phenylethanethiolate), obtained by ligand exchange of [Au₂₅(SC₂Ph)₁₈]⁻ with one or two porphyrinthiolate (Por) ligands as mixtures of regioisomers.

(Figure 2) The ratio of two regioisomers in [Au₂₅(SC₂Ph)₁₇(Por)]⁻ as measured by ¹H NMR spectroscopy revealed that the selectivity could be controlled by the steric hindrance of the incoming thiols. Extended X-ray absorption fine structure studies of a series of porphyrin-coordinated gold nanoclusters clarified that the Au₁₃ icosahedral core in the Au₂₅ cluster was distorted through steric repulsion between porphyrin thiolates and phenylethanothiolates. This study reveals interesting insights into the importance of the steric structures of protecting ligands for control over core structures in gold nanoclusters.

Figure 1. Location-selective immobilization of Pt single atoms on the surface or within the interior of CdSe nanocrystals and its effects on photocatalytic hydrogen evolution.

Figure 2. Strategy for control over regioselectivity of [Au₂₅SR₁₈]⁻ by steric effect.
We perform kinetic and mechanistic analyses toward understanding chemical and physicochemical reactions occurring in polymerization systems and better routes for synthesis of well-defined polymers. In particular, new well-defined polymers or polymer assemblies are prepared by living polymerization techniques, and their structure–property relationships are precisely analyzed. Projects in progress include: 1) kinetics and mechanisms of living radical polymerization (LRP); 2) synthesis of new polymeric materials by living polymerizations and their structure/property studies; and 3) synthesis, properties, and applications of concentrated polymer brushes (CPB).

KEYWORDS
- Precision Polymerization
- Living Radical Polymerization
- Polymer Brush
- Tribology
- Hybrid Materials

Recent Selected Publications
Precision Synthesis of Asymmetric Cellulose Nanocrystals with Regioselectively End-Grafted Polymer Brushes

The cellulose nanocrystal (CNC), which is a nanoparticle obtained by hydrolysis of cellulose, has many intriguing properties, including strength, stiffness, biocompatibility, biodegradability, and high aspect ratio. Notably, recent advancements have been made in selectively modifying aldehyde groups located at the reducing edge of CNC with end-grafted polymer chains. Nanoparticles with high-density, concentrated polymer brush (CPB) can form colloidal crystals because of the high resistance against compression and the extremely low friction of the CPB layer. Therefore, we hypothesized that the CNC, with two types of polymers (of different molecular weights) regioselectively grafted on its reducing edge and other sides (referred to as an asymmetric polymer-brush-modified nanorod: asym-PB nanorod, Fig. 1), could form novel higher-order structures because of its asymmetric shape and interparticle repulsive potential.

In this study, we have developed a novel synthetic route for asym-PB nanorods. This involves the introduction of azido groups to the reducing edge of CNC followed by the click reaction to couple reversible addition-fragmentation chain transfer (RAFT) polymerization initiators. Subsequently, atom transfer radical polymerization (ATRP) initiators were introduced to hydroxyl groups on the CNC-side surface to yield a CNC macroinitiator (Fig. 1). Finally, successive RAFT polymerization and ATRP were conducted to obtain the desired asym-PB nanorod. We have confirmed that thus obtained asym-PB nanorod had densely grafted polymer chains at the reducing edge and other CNC-side surface through various evaluations. The surface pressure–area per molecule (π–A) isotherms of the asym-PB nanorod showed a distinctive plateau (Fig. 2), suggesting a phase transition occurring possibly thanks to the polymer brush of high molecular weight at the reducing edge. The details studies are now in progress, and our ultimate objective is to create a novel higher-order structure of asym-PB nanorods.

Hydration Water and Anti-Icing Functions of Hydrophilic Concentrated Polymer Brushes

Hydrophilic concentrated polymer brushes (CPBs) are expected to exhibit antifouling, antifogging, and anti-icing functions, which have been actively studied. To comprehensively understand the mechanism of these functions, it is essential to understand the interaction between CPB and water. However, there are only a few studies on direct measurement of such interactions, and in particular, its analysis and observation at low temperatures, which are important for elucidating the mechanism of the anti-icing property, have not yet been accomplished. One of the reasons for this is that CPB is usually an ultra-thin film, making it difficult to apply general-purpose analytical methods. Recently, we succeeded in synthesizing hydrophilic CPBs that are an order of magnitude thicker than previously possible. In this study, we have challenged to directly observe the hydration state of water inside CPB, which had never been achieved before, using CPBs with an ultra-large thickness as the key materials. The results are discussed in relation to the anti-icing property at the CPB interface.

Through the atom transfer radical polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) as a monomer, a hydrophilic CPB with a thickness of about 1 µm was synthesized on a Si wafer. The ice adhesion strength was measured by horizontally peeling off a cylindrical ice pillar prepared on a surface-modified Si wafer in a temperature-controlled microscopic stage. The results are shown in Fig. 3, suggesting that the effect was above the icephobic level, which is based on 100 kPa or lower. In addition, the hydration state of water-swollen CPB was analyzed by infrared microspectrometry (Fig. 4). It was observed that water inside the brush does not freeze even at low temperatures, and this is considered to be responsible for the excellent anti-icing function. Further investigation is currently on-going.

![Figure 1. Synthetic scheme for asym-PB nanorod.](image1)

![Figure 2. π–A curves for asym-PB nanorod and its analogue.](image2)

![Figure 3. Temperature dependency of ice adhesion strength t_{ice} for CPB.](image3)

![Figure 4. IR spectra of the water-containing PPEGMA-CPB at positions near a water droplet as a function of temperature.](image4)
Recent Selected Publications

Stochastic Simulation of Controlled Radical Polymerization Forming Dendritic Hyperbranched Polymers

The formation process of hyperbranched polymers (HBPs) based on the reversible deactivation radical polymerization (RDRP) using a branch-inducing monomer, evolmer, was investigated by stochastic simulation. Our original simulation program successfully reproduced the change of dispersities (D_s) during the polymerization process. Based on the simulation, we found that the observed D_s (=1.5–2) are due to the distribution of the number of branches instead of undesired side reactions. We further found that the branch structures are well controlled, so the majority of HBPs have structures close to the ideal one (Fig. 1). The simulation also suggested that, if we pay attention to individual molecules, the branch density slightly changes depending on molecular weight. This trend was experimentally confirmed by synthesizing HBPs with an evolmer having a phenyl group and analyzing the signal intensity from multiple detectors in size exclusion chromatography.

Synthesis of Twisted $[n]$Cycloparaphenylene by Alkene Insertion

By fusing CPP precursors and alkene or ortho-phenylene groups via coupling reactions, mono-alkene-inserted $[n]$ cycloparaphenylenes 1 [(ene-$[n]$CPP] with $n = 6, 8,$ and 10, mono-ortho-phenylene-inserted $[6]$CPP 2, and di-alkene-inserted $[n]$CPP 3 [(ene)$_2$-$[n]$CPP] with $n = 4, 6,$ and 8 were synthesized. Single-crystal X-ray diffraction analyses revealed that the strips formed by the π-surfaces of 1 and 2 exhibited a Möbius topology in the solid state. The Möbius topology in the parent 1 and 2 in a solution was lost due to the free rotation of the paraphenylene unit even at low temperatures. On the other hand, ene-$[6]$CPP 4 with eight 1-pyrrolyl groups preserved the Möbius topology even in a solution. Despite a twist, 1 has in-plane conjugation and possesses a unique size dependence of the electronic properties; i.e., the opposite size dependency of the HOMO-LUMO energy relative to conventional π-conjugated molecules.

Figure 1. Weight distribution of simulated structure of HBP.

Figure 2. Insertion of alkene or ortho-phenylene units into a CPP skeleton.
Scope of Research

NV centers in diamond have been extensively interested because a single spin of the NV center can be manipulated and detected at room temperature. Furthermore, a spin-coherence time of the NV center is very long. The spin-coherence time is the time to retain coherence (superposition state) and directly relates to the sensitivity of sensors of magnetic field, electric field and temperature. Therefore, the unique and excellent properties of the NV center are expected to be applied for quantum computing, quantum communication, bio-imaging, and high-sensitive sensor with nano-scale resolution.

KEYWORDS
Diamond Quantum Materials
NV Center Quantum Sensing
Quantum Information Science

Recent Selected Publications
Ultra-Long Coherence Times Amongst Room-Temperature Solid-State Spins

Solid-state single spins are promising resources for quantum sensing, quantum-information processing and quantum networks, because they are compatible with scalable quantum-device engineering. However, the extension of their coherence times proves challenging. Although enrichment of the spin-zero ^{12}C and ^{28}Si isotopes drastically reduces spin-bath decoherence in diamond and silicon, the solid-state environment provides deleterious interactions between the electron spin and the remaining spins of its surrounding. Here we demonstrate, contrary to widespread belief, that an impurity-doped (phosphorus) n-type single-crystal diamond realises remarkably long spin-coherence times. Single electron spins show the longest inhomogeneous spin-dephasing time ($T_{2}^{*} \approx 1.5$ ms) and Hahn-echo spin-coherence time ($T_{2} \approx 2.4$ ms) ever observed in room-temperature solid-state systems, leading to the best sensitivities (amongst others such as temperature), which we confirmed for AC magnetic fields. From the analysis of the noise spectrum, the elongation of T_{2} could be realised by optimising the phosphorus concentration and by continuing to decrease the paramagnetic impurities and defects.

The extension of coherence times in diamond semiconductor may allow for new applications in quantum technology.

Extension of the Coherence Time by Generating MW Dressed States in a Single NV Centre in Diamond

Nitrogen-vacancy (NV) centres in diamond hold promise in quantum sensing applications. A major interest in them is an enhancement of their sensitivity by the extension of the coherence time (T_{2}). In this report, we experimentally generated more than four dressed states in a single NV centre in diamond based on Autler-Townes splitting (ATS). We also observed the extension of the coherence time to $T_{2} \sim 1.5$ ms which is more than two orders of magnitude longer than that of the undressed states. Numerical estimations show the sensitivity of the quantum sensing with the dressed states can be enhanced at least one-order of magnitude with experimentally observed $T_{2\rho}$ and T_{2}. Thus, we believe that the quantum sensing with the dressed states can be applicable for improving the sensitivity of a quantum sensing. As an example of a quantum application using these results we propose a protocol of quantum sensing, which shows more than an order of magnitude enhancement in the sensitivity.

![Figure 1. Echo signal of the single NV centre at room temperature. (Insert) Bloch sphere to show the coherence (superposition state).](image1)

![Figure 2. (Top) Pulse sequence to observe $T_{2\rho}$ and T_{2} with applying a phase cycle to the final $\pi/2$ pulse. (Bottom) Black and red plots show the results of $T_{2\rho}$ and T_{2} measurements, respectively. They are fitted by exponential decay curves described by black and red solid lines.](image2)
Scope of Research

Conventional electronics uses only the charge of electrons, while traditional magnetic devices use only the spin degree of freedom of electrons. Aiming at complete control of both charge and spin in single solid-state devices, an emerging field called spintronics is rapidly developing and having an impact on information technologies. By combining the atomic-layer deposition with nanofabrication, we focus on the development of spin properties of various materials and the control of quantum effects in mesoscopic systems for novel spintronics devices.

KEYWORDS
Spintronics Magnetism Magnetic Materials

Recent Selected Publications

Realization of the Field-Free Superconducting Diode Effect

The diode effect is fundamental to electronic devices and is widely used in rectifiers and AC–DC converters. At low temperatures, however, conventional semiconductor diodes possess a high resistivity, which yields energy loss and heating during operation. The superconducting diode effect (SDE), which relies on broken inversion symmetry in a superconductor may mitigate this obstacle: in one direction a zero-resistance supercurrent can flow through the diode, but for the opposite direction of current flow, the device enters the normal state with ohmic resistance. The application of a magnetic field can induce SDE in Nb/V/Ta superlattices with a polar structure, in superconducting devices with asymmetric patterning of pinning centres, or in superconductor/ferromagnet hybrid devices with induced vortices. The need for an external magnetic field limits their practical application. Here, we present implementation of zero-field SDE using noncentrosymmetric [Nb/V/Co/V/Ta]20 multilayers. The magnetic layers provide the necessary symmetry breaking and we can tune the SDE by adjusting the structural parameters, such as the constituent elements, film thickness, stacking order, and number of repetitions. We control the polarity of the SDE through the magnetization direction of the ferromagnetic layers. Energy-loss-free SDEs as presented in this work may therefore enable novel non-volatile memories and logic circuits with ultralow power consumption.

Spin-Transfer-Torque-Driven Magnetic Domain Wall Motion in Antiferromagnetically Coupled Ferrimagnets

Magnetic domain wall (DW) racetrack memory is a next-generation, non-volatile and high-density magnetic memory, where the magnetic domain walls work as information bits and they are controlled by electric current via the effect of spin transfer torque (STT). However, to enhance thermal stability while keeping low driven current is difficult in traditional domain wall (DW) motion devices. The increasing of energy barrier for thermal stability inevitably results in the enhancement of driven current. We numerically investigate depinning field (H_{dep}) and critical current density (J_c) for DW motion as a function of uniaxial magnetic anisotropy (K_u) in vertical DW motion memory with artificial ferromagnet. It is found that H_{dep} and J_c show different K_u dependence. The results indicate that it is promising to simultaneously achieve high thermal stability and low driven current in artificial ferromagnet based DW motion devices.

Figure 1. (a) Schematic of the SDE and measurement configuration. The magnetic field is applied perpendicular to both the polar axis and the electrical current. (b) Non-volatile SDE at 1.9 K. Red and black dots represent the results for negative magnetization (-M) and positive magnetization (+M), respectively. Current densities $J = 72.7$ kA cm$^{-2}$ and $J = -72.7$ kA cm$^{-2}$ at 1.9 K without a magnetic field were repeatedly applied. The device shows a superconducting state or normal conducting state depending on the polarity of the current. Note that the polarity of SDE depends on the direction of magnetization. The -M or +M state is achieved after sweeping the magnetic field in the order of +0.5, 0, −0.15, 0 T or −0.5, 0, +0.15, 0 T.

Figure 2. (a) Schematic illustration of the experimental setup. (b) The STT-induced DW velocity as a function of temperature. The dotted orange line represents the angular momentum compensation temperature T_T.

Topics

ICR ANNUAL REPORT, 2023
Recent Selected Publications

Development of a Dual Sensor to Track pH and an Enzyme Activity in Individual Macropinosomes

Macropinocytosis is an endocytic pathway that results in the formation of macropinosomes through massive uptake of extracellular fluids. For instance, certain cancer cell types use macropinocytosis to obtain extracellular nutrients, such as amino acids, to support their proliferation. Furthermore, macropinocytosis represents a promising route for the effective delivery of biological macromolecules including proteins and antibodies. Nonetheless, a comprehensive understanding of the intracellular dynamics of macropinosomes has yet to be attained. Increased knowledge of individual macropinosomes behavior in living cells could significantly impact the design concept of drug delivery tools and development of drugs against cancer.

A fluorescent sensor that enables simultaneous analysis of multiple parameters in limited or specific cellular space is useful for comprehending molecular dynamics and biological responses in living cells. In this study, we aimed to develop a macropinoscope, a fluorescent sensor that detects both pH and cathepsin B activity in individual macropinosomes through fluorescence microscopy. Dextran (70 kDa) was utilized as a macropinosome-specific marker platform, onto which three fluorophores (fluorescein, Oregon Green, and tetramethylrhodamine) were loaded for ratiometric pH sensing and imaging. Additionally, a cathepsin-B-cleavable peptide sequence, bearing sulfo-Cy5 fluorophore and the BHQ-3 quencher, was loaded onto the platform. The cathepsin B activity can be detected by an increase in sulfo-Cy5 fluorescence when the peptide sequence is cleaved. The macropinoscope was utilized to investigate the behavior of individual macropinosomes produced by constitutive macropinocytosis in HT1080 cells. We discovered that a sharp decrease in pH occurred close to the cell nucleus, 5-10 minutes after macropinosome formation. We also observed an immediate rise in cathepsin B activity as the pH of the macropinosome reached around 6.

In the future, the sensor is expected to enable thorough examination of macropinosome behavior under other conditions and in different cell types. Additionally, our design concept will pave the way for the development of various macropinoscopes tailored to other parameters in individual macropinosomes.

Reference

Inhibition of m6A Demethylation Activity of FTO by Xanthine Derivatives with L-Ascorbic Acid-Related Manner

Chemical modifications of RNA play an important role in gene regulation. In particular, N6-methyladenosine (m6A), which is present in transcripts at high frequency, is involved in development and differentiation as well as various diseases. Despite the increasing evidence of the importance of m6A RNA methylation, convenient m6A detection methods for measuring the activity of RNA methyltransferases and demethylases and for screening their inhibitors have been lacking. Here, a simple method to detect the methylation states of RNA was constructed using the Escherichia coli RNA endonuclease MazF, which we found to be m6A-sensitive, in combination with the FRET probe containing an m6A consensus RNA sequence. We searched for inhibitors of the m6A demethylase FTO, one of the member of Fe(II) and 2-oxoglutarate-dependent oxygenases. Xanthine derivatives were identified as specific inhibitors of the m6A demethylase activity of FTO. These inhibitors exhibited L-ascorbic acid concentration-dependent inhibitory activity against FTO, an unprecedented mode of inhibition. Our results have significant implications for understanding the regulatory mechanisms of FTO and the design of FTO-specific inhibitors.

Reference

Figure 1. Macropinoscope can track dual parameters (pH and cathepsin B activity) of individual macropinosomes by fluorescence microscopy. Reprinted from [1].

Figure 2. An activity-based screening for FTO inhibitor identified xanthine derivatives as specific inhibitor with an L-ascorbic acid-dependent mode of inhibition. Reprinted from [2].
Plant hormones are a group of small molecules that are synthesized by plants and control their growth, development and environmental responses. This laboratory aims at elucidating how plant hormones are made and act in plants. Towards this goal, we combine chemical (organic chemistry, biochemistry, and analytical chemistry) and biological (molecular genetics, physiology, molecular biology, genomics) approaches. We are also looking for new hormone-like compounds by using mutant plants that show morphological phenotypes.
The Mechanism for Strigolactone Perception and Deactivation by a DWARF14 Receptor

Strigolactones (SLs) have been identified as root-derived signals for parasitic and symbiotic interactions in the rhizosphere. In addition to these functions as allelochemicals, SLs are now known as endogenous plant hormones that regulate many aspects of plant growth such as outgrowth of axillary shoots, root development and leaf senescence.

Recently, the perception mechanism for SLs has been a subject of debate because their receptor, DWARF14 (D14), is an α/β-hydrolase that can cleave SLs. In the study of Seto et al. (2019), we first conducted time-course analyses of SL binding and hydrolysis by Arabidopsis D14 (AtD14) by using differential scanning fluorimetry (DSF) experiments and hydrolysis assays (Figure 1). In these analyses, we found that the level of uncleaved GR24, a synthetic SL analog, strongly correlates with the induction of the melting temperature (Tm) shift of AtD14, suggesting that SLs trigger the active state of D14 before their hydrolysis.

We next analyzed the catalytic triad mutants of AtD14. Among them, interestingly, the AtD14^{R183H} mutant completely complemented the hyper-branching phenotype of the atd14 mutant though it lacks the hydrolase activity (Figure 2). Moreover, we found that the AtD14^{R183H} mutant could interact with SMXL7, a negative regulator of SL signaling, in an SL-dependent manner in yeast two hybrid experiments (Figure 2). These findings suggest that the hydrolase reaction catalyzed by D14 is not necessary for the signal transducing role.

Moreover, we showed that overexpression of the AtD14^{R183H} mutant, which could not interact with SMXL7 in the presence of SLs, but could hydrolyze SLs like AtD14^{WT}, resulted in an increased shoot branching phenotype (data not shown). These results support the idea that the hydrolase reaction catalyzed by D14 would be a deactivating step of SLs after transducing the signal.

From these lines of evidence, we conclude that the intact SL molecules trigger the D14 active signaling state, and that D14 deactivates bioactive SLs by hydrolysis after signal transmission. Together, our results revealed that D14 is a dual-functional receptor, responsible for both the perception and deactivation of bioactive SLs (Figure 3).
Recent Selected Publications

Redundant Function of the Arabidopsis PIP5K Genes for Pollen Germination

Pollen is the male gametophyte with a functional structure for transferring sperm cells to the egg apparatus in seed plants. Pollen undergoes unique cell biological processes of pollen development to support its structural development and functional performance. After pollination, a pollen grain first establishes a cell polarity focusing on the future germination site, and then, a pollen tube germinates and elongates through tip growth toward the embryo sac according to a series of guidance signals. Although these complicated processes accurately progress, underlying regulatory mechanisms remain largely elusive, especially for the germination process involving the cell polarity.

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P$_2$], one of phosphoinositides serving as a signaling molecule in eukaryotic cells is localized mainly to the plasma membrane frequently with a polarized pattern. Through the functions of its interacting proteins, PtdIns(4,5)P$_2$ regulates various cell biological processes, including cytoskeletal organization, membrane trafficking, and signal transduction for gene expression. While the metabolic pathways of phosphoinositides link together to form a complicated network, the phosphorylation of PtdIns(4)P by phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is thought to be a key pathway responsible for the production of PtdIns(4,5)P$_2$ in higher plants, where some of the phosphoinositide metabolic pathways found in animals or fungi are missing.

Among the 11 PIP5K genes of Arabidopsis thaliana, PIP5K4, PIP5K5, and PIP5K6 have been intensively studied on their functions in pollen tube growth, and strongly suggested to have an indispensable function for the elaborate pollen system of angiosperms. However, this idea remains to be verified, mainly because comprehensive genetic analysis of the genes using their loss-of-function mutants has not been done. We performed a comprehensive genetic analysis of the genes and revealed that their redundant function is essential for pollen germination. Pollen with the pip5k4pip5k5pip5k6 triple mutation was sterile. PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP, which could rescue the sterility of the triple mutant pollen, preferentially localized to the tricolpate aperture area and the future germination site on the plasma membrane prior to germination (Figure 1). Triple mutant pollen grains under the germination condition, in which spatiotemporal localization of the PtdIns(4,5)P$_2$ fluorescent marker protein 2xmCHERRY-2xPH$_{PLC}$ as seen in the wild type was abolished (Figure 2), exhibited swelling and rupture of the pollen wall, but neither the conspicuous protruding site nor site-specific deposition of cell wall materials for germination. These data indicate that PIP5K4–6 and their product PtdIns(4,5)P$_2$ are essential for pollen germination, possibly through the establishment of the germination polarity in a pollen grain.

Figure 1. Subcellular localization of YFP-fused PIP5K4–6 proteins prior to pollen germination. (A) Bright field (left) and YFP fluorescence (right) images of pollen grains expressing PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP prior to pollen germination are shown. (B) Bright field (left) and YFP fluorescence (middle) images, and index-color images of YFP fluorescence (right) of pollen grains expressing PIP5K6-YFP prior to pollen germination are shown. Arrows on bright field images in (A) indicate pollen apertures. Scale bars: 10 μm.

Figure 2. Subcellular localization of PtdIns(4,5)P$_2$ marker protein and PIP5K6-YFP in the pip5k4 pip5k5 pip5k6 pollen. Pollen grains from transgenic plants heterozygously and homozygously containing PIP5K6p-PIP5K6-YFP and UBQ10p-2xmCHERRY-2xPH$_{PLC}$, respectively, in the pip5k4pip5k5pip5k6 background were untreated (A) or treated (B) with pollen germination medium. Fluorescence images of PIP5K6-YFP (left) and 2xmCHERRY-2xPH$_{PLC}$ (second left), merged images (second right), and bright field images (right) are shown. Asterisks indicate pip5k4pip5k5pip5k6 pollen grains without the PIP5K6p-PIP5K6-YFP transgene. Scale bars: 10 μm.
Chemical biology is an interdisciplinary field of study that is often defined as “chemistry-initiated biology.” As biological processes all stem from chemical events, it should be possible to understand or manipulate biological events using chemistry. Our laboratory has been discovering or designing unique organic molecules that modulate fundamental processes in human cells. Such synthetic organic molecules often serve as tools for basic cell biology. Discovery or design of small molecules with unique biological activities permits small-molecule-initiated exploration of complex cellular events. Our mission is to create a new world of bioactive synthetic molecules: new modes of activity, new shapes, and new sizes. We hope that these basic studies open new avenues for small-molecule applications in a range of fields.

Scope of Research

Recent Selected Publications

Small-Molecule Drug Repurposing for Count-teracting Phototoxic A2E Aggregation

Despite the well-established role of oxidative stress in the pathogenesis of age-related macular degeneration (AMD), the mechanism underlying phototoxicity remains unclear. The Uesugi group used a drug repurposing approach to isolate an FDA-approved drug that blocks the aggregation of the photoinducible major fluorophore of lipofuscin, the bis-retinoid N-retinylidene-N-retinylethanolamine (A2E). Their fluorescence-based screening combined with dynamic light scattering (DLS) analysis led to the identification of entacapone as a potent inhibitor of A2E fluorescence and aggregation. The entacapone-mediated inhibition of A2E aggregation blocks its photodegradation and offers photoprotection in A2E-loaded retinal pigment epithelial (RPE) cells exposed to blue light. In-depth mechanistic analysis suggests that entacapone prevents the conversion of toxic aggregates by redirecting A2E into off-pathway oligomers. These findings provide evidence that aggregation contributes to the phototoxicity of A2E.

Identification of a Self-Assembling Small-Molecule Cancer Vaccine Adjuvant with an Improved Toxicity Profile

Protein or peptide cancer vaccines usually include immune potentiators, so-called adjuvants. However, it remains challenging to identify structurally simple, chemically accessible synthetic molecules that are effective and safe as vaccine adjuvant. The Uesugi group discovered cholicamidéβ (6), a self-assembling small-molecule vaccine adjuvant with an improved toxicity profile and proven efficacy in vivo. The Uesugi group and their collaborators demonstrated that cholicamidéβ (6), which is less cytotoxic than its parent compound, forms virus-like particles to potently activate dendritic cells with the concomitant secretion of cytokines. When combined with a peptide antigen, cholicamidéβ (6) potentiated the antigen presentation on dendritic cells to induce antigen-specific T cells. As a therapeutic cancer vaccine adjuvant in mice, a mixture of cholicamidéβ (6) and a peptide antigen protected mice from the challenges of malignant cancer cells without overt toxicity. Cholicamidéβ (6) may offer a translational opportunity as an unprecedented class of small-molecule cancer vaccine adjuvants.
Scope of Research

Our research goal is to develop high-performance organic electroluminescence devices, organic solar cells, and polymer materials. Toward this, we carry out syntheses, device fabrications, precise structure characterizations, and quantum chemical calculations for high functional organic materials. Along with exploring novel synthetic routes and novel devices, we perform detailed analyses of structures and dynamics, mainly by sophisticated solid-state NMR spectroscopy, in order to obtain structure–dynamics–property relationships.

Students

- REN, Yongxia (D4)
- KUSAKABE, Yu (D3)
- MURAKAMI, Kimiya (D2)
- FUJINAKA, Masatoshi (D2)
- SATO, Hiroki (D1)
- ISHIHARA, Kuraudo (M2)
- OKUMURA, Kazuki (M2)
- OKUMURA, Ryosuke (M2)
- ONOE, Renon (M1)
- YASUDA, Yuka (M1)
- FUKUSHIMA, Shohei (M1)
- KAWABATA, Kazuhiro (UG)

Recent Selected Publications

Promoting Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence via the Heavy-Atom Effect

Fast reverse intersystem crossing (RISC) in thermally activated delayed fluorescence (TADF) is an effective approach to improving the device lifetime of organic light-emitting diodes. In this study, we reported the heavy-atom effect on TADF and a molecular design for accelerating RISC. We reproduced all the relevant rate constants of a sulfur-containing molecule (k_{RISC} of 10^8 s$^{-1}$) using density functional theory and revealed the role of the heavy-atom effect on the rapid RISC. Then, we predicted much larger k_{RISC} ($>10^{10}$ s$^{-1}$) for selenium- and tellurium-containing molecules. We also predicted that a polonium-containing molecule would promote phosphorescence without exhibiting TADF, indicating that a too strong heavy-atom effect is disadvantageous for achieving both rapid RISC and efficient TADF. A moderate heavy-atom effect was found to be essential for fast RISC in TADF.

Figure 1. Promoting Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence.

Torsion Angle Analysis of a Thermally Activated Delayed Fluorescence Emitter in an Amorphous State Using Dynamic Nuclear Polarization Enhanced Solid-State NMR

The torsion angle between donor and acceptor segments of a thermally activated delayed fluorescence (TADF) molecule is one of the most critical factors in determining the performance of TADF-based organic light-emitting diodes (OLEDs) because the torsion angle affects not only the energy gap between the singlet and triplet but also the oscillator strength and spin–orbit coupling. However, the torsion angle is difficult to analyze, because organic molecules are in an amorphous state in OLEDs. Here, we determined the torsion angle of a highly efficient TADF emitter, DACT-II, in an amorphous state by dynamic nuclear polarization-enhanced solid-state NMR measurements. From the experimentally obtained chemical shift principal values of 15N on carbazole, we determined the average torsion angle to be 52°. Such quantification of the torsion angles in TADF molecules in amorphous solids will provide deep insight into the TADF mechanism in amorphous OLEDs.

Figure 2. Torsion angle analysis of TADF emitter by DNP-NMR.

Multiple Stimuli-Responsive Supramolecular Organic Framework under Concomitant Emission Color Changes

A stimuli-responsive luminophore embedding an overcrowded bistricyclic aromatic ene structure with a heptagon-hexagon central ring, DCHA-TRZ, has been designed and synthesized. In a single-crystalline solid, DCHA-TRZ constructed a supramolecular organic framework (SOF) including n-hexane molecules as a guest molecule. The crystalline SOF (α phase) exhibited reversible crystalline (α)-to-amorphous-to-crystalline (β) solid-state phase transitions triggered by external stimuli of mechanical grinding and treatment with a n-hexane solvent, in which release and inclusion of the guest molecules played an important role. Moreover, the thermal annealing of the amorphous ground solid afforded a bluish green-emitting solid with a different crystalline phase (β). The combination of the three external stimuli of the mechanical grinding, thermal annealing and solvent treatment enables the reversible and cyclical phase transitions among three solid-state phases (crystalline α, β and amorphous) under concomitant emission color changes.

Figure 3. Multiple stimuli-responsive SOF under concomitant emission color changes on the mortar.
Division of Environmental Chemistry

– Hydrospheric Environment Analytical Chemistry –

https://inter3.kuier.kyoto-u.ac.jp/scope_E.html

Prof SOHRIN, Yoshiki
(D Sc)

Assist Prof TAKANO, Shotaro
(D Sc)

Assist Prof ZHENG, Linjie
(D Sc)

Techn Staff IWASE, Misato

Guest Scholar* CAI, Pinghe
(Ph D)

Students

UEKI, Ryuta (D3)

CHAN, Cheuk-Yin (D3)

MATSUOKA, Kohei (D1)

KAKIMOTO, Ryochi (M1)

YUNOKI, Keisuke (M1)

Guest Res Assoc

HSIEH, Chih-Chiang (Ph D)

Research Center for Environmental Changes, Academia Sinica, Taiwan, 27 September 2023–26 October 2023

HO, Yi-Ning

Institute of Oceanography, National Taiwan University, Taiwan, 27 September 2023–26 October 2023

Scope of Research

(i) Biogeochemistry of trace elements in the hydrosphere: Novel analytical methods are developed for trace metals and their isotopes. Distribution of trace elements in the hydrosphere and their effects on the ecosystem are investigated. The study also covers hydrothermal activity, deep biosphere, and paleocean. (ii) Ion recognition: Novel ligands and ion recognition system are designed, synthesized, and characterized.

Recent Selected Publications

KEYWORDS

Marine Chemistry Analytical Chemistry Trace Elements Stable Isotopes Metal Ion Recognition
Distribution of Stable Isotopes of Mo and W from a River to the Ocean: Signatures of Anthropogenic Pollution

Molybdenum (Mo) and tungsten (W) are redox-sensitive elements, and their stable isotope ratios have attracted attention as paleoceanographic proxies. However, our knowledge of the distribution of stable Mo and W isotopes in the modern hydrosphere remains limited. In this study, we provided the concentrations and isotope ratios of dissolved Mo and W in the oceans (the North Pacific and Indian Oceans), marginal seas (East China and the Sea of Japan), and a river-estuary system in Japan (from the Uji-Yodo rivers to Osaka Bay). In the North Pacific and Indian Oceans, the W concentration was 48.2 ± 6.2 pmol/kg (ave ± 2sd, n = 109), δ$^{186/184}$W was 0.52 ± 0.06 ‰, the Mo concentration was 105.1 ± 8.0 nmol/kg, and δ$^{98/95}$Mo was 2.40 ± 0.06 ‰. The results indicate that W has the constant concentration and isotopic composition in the modern ocean as well as Mo. In the East China Sea and the Sea of Japan, the W concentration and δ$^{186/184}$W in the upper water (< 1000 m depth) were different from those in the ocean (W = 56 ± 18 pmol/kg, δ$^{186/184}$W = 0.45 ± 0.06 ‰, n = 24). However, the concentrations in deeper water were congruent with those in the oceans (W = 49.9 ± 7.6 pmol/kg, δ$^{186/184}$W = 0.50 ± 0.02 ‰, n = 7). The Mo concentration was 105.4 ± 3.1 nmol/kg and δ$^{98/95}$Mo was 2.36 ± 0.03 ‰ (n = 31) throughout the water column, congruent with those in the ocean. In the Uji River-Yodo River-Osaka Bay system, the W concentration reached 1074 pmol/kg and δ$^{186/184}$W reached 0.20 ‰. We propose that the enrichment of W with a low δ$^{186/184}$W in the river-estuary system and marginal seas is caused by anthropogenic pollution. Anthropogenic Mo pollution was not detected in marginal seas. However, the Mo concentration and δ$^{98/95}$Mo showed high anomalies above the mixing line of river water and seawater in the lower Yodo River and Osaka Bay, implying possible anthropogenic pollution of Mo in the metropolitan area.

Distributions of Zirconium, Niobium, Hafnium, and Tantalum in the Subarctic North Pacific Ocean Revisited with a Refined Analytical Method

Although zirconium (Zr), niobium (Nb), hafnium (Hf), and tantalum (Ta) in seawater are potential tracers for water masses, their determination is still a challenge in analytical chemistry. We have refined our preconcentration method using 8-hydroxyquinoline chelating resin (TSK-8HQ) and reinvestigated concentration profiles of the four elements in dissolved (d) and total dissolvable (td) fractions at five different stations from 47 °N, 160 °E to 51 °N, 160 °W in the subarctic North Pacific Ocean. The new method has saved analytical time and reduced systematic errors compared with previous methods. The concentration ranges were 30 – 276 pmol/kg for dZr, 1.0 – 2.6 pmol/kg for dNb, 0.09 – 0.78 pmol/kg for dHf, and 0.006 – 0.026 pmol/kg for dTa in the subarctic North Pacific Ocean. The concentrations of Zr and Hf increased from surface water to deep water, whereas those of Nb and Ta were nearly constant over the water depth. The profiles of dZr, dNb, and dHf were consistent with those in previous studies. However, we found that dTa is uniformly distributed at 0.015 ± 0.005 pmol/kg (mean ± sd, n = 75), which is approximately one-fifth of that in a previous study. It is likely that the previous dTa data were affected by a systematic error. Negligible differences between td and d fractions suggest that the particulate concentrations of these elements are lower than those reported in a previous study.

Figure 1. Sampling stations of this study: A, global map; B, map of the Uji River-Yodo River-Osaka Bay system.

Figure 2. Graphical abstract of this study.
Division of Environmental Chemistry
– Chemistry for Functionalized Surfaces –
https://www.scl.kyoto-u.ac.jp/~yoeki/

Prof
HASEGAWA, Takeshi
(D Sc)

Assoc Prof
MORI, Taizo
(D Eng)

Assist Prof
SHIOYA, Nobutaka
(D Sc)

Program-Specific Res
KUROSE, Noriko
(D Eng)

Students
OKA, Takayuki (M2)
SAKO, Nobuaki (M2)
ARAKI, Taisuke (M1)
SUGIMOTO, Emi (M1)

Scope of Research
To understand the chemical structure and properties of a molecular aggregated system, the keywords of molecular interactions and orientation are focused on, and the molecular aggregates are investigated by using originally developed spectroscopic techniques. The current major topics are: (1) perfluoroalkyl-specific properties in a condensed system; (2) controlling factors of molecular packing and orientation in a thin film of an organic semiconductor compound; (3) development of new molecular orientation analytical technique “MAIRS2.”

Recent Selected Publications
Insights on the Molecular Orientation of Oligo(p-Phenylene Vinylene) Derivatives with Alkyl Chains in Langmuir Films

One of the oligo(p-Phenylene Vinylene) derivatives having alkyl chains, OPV-1, is known to form rod-shaped nanoaggregates on the water surface, and thin films with aligned nanoaggregates can be obtained by the Langmuir–Blodgett (LB) technique. Although the molecular aggregation and orientation of the “conjugated rings part” in the LB films have already been investigated, analysis of the detailed molecular structure involving the “alkyl chains” is left behind. In the present study, to reveal the role of the alkyl chains in the molecular aggregation in Langmuir films prior to the LB transfer, infrared (IR) external reflection spectroscopic measurements on the water surface are carried out. It has been revealed that not only the conjugated rings of OPV-1 but also the alkyl chains with an ordered conformation are lying on the water surface. In addition, the orientation is found to be kept on a solid substrate even after the LB transfer by IR p-polarized multiple-angle incidence resolution spectrometry.

Structural Rearrangement of Organic Semiconductor Molecules with an Asymmetric Shape in Thin Films

2-Decyl-7-phenyl[1]benzo[4,5-b][3,4-c]benzo[b]thiophene (Ph-BTBT-C10) exhibits excellent performances as an active layer in organic thin-film transistors, and its performances are greatly influenced by the molecular packing, i.e., the crystalline polymorphs. This compound has the so-called thin-film phase in a vapor-deposited film, which is different from the single-crystal structure (the bulk phase). In this work, thin films of Ph-BTBT-C10 are prepared by spin coating, and the effect of aging on the film structure is investigated by high-resolution IR spectroscopy in combination with X-ray diffraction. The results show that the as-spun film has the same thin-film phase as the vapor-deposited film and that the thin-film phase is rapidly converted to the bulk phase by aging at room temperature. This work highlights the importance of using IR spectroscopy with a high-wavenumber resolution for structural analysis of molecular thin films.

Conformational Change of Alkyl Chains at Phase Transitions in Thin Films of an Asymmetric Benzothienobenzothiophene Derivative

Ph-BTBT-C10 has a highly ordered liquid crystalline state, i.e., the smectic E (SmE) phase. Although the transition from the crystalline state to the SmE phase is believed to accompany melting of the alkyl chains, no spectroscopic evidence has been found so far. In this study, the conformational change of the decyl chains in Ph-BTBT-C10 films across the phase transition is analyzed by temperature-dependent measurements in situ using IR spectroscopy. The spectral analysis reveals that the polycrystalline film has latent conformational disorder (the gauche conformer), the rate of which becomes more pronounced with the heat treatment. As expected, melting of the decyl chains is observed above the transition temperature to the SmE phase.

Figure 1. Lying orientation of oligo(p-phenylene vinylene) derivatives on the water surface.

Figure 2. Structural rearrangement of Ph-BTBT-C10 from the thin-film phase to the bulk phase revealed by IR spectroscopy.

Figure 3. Conformational change of alkyl chains of Ph-BTBT-C10 with temperature.
Assist Res Staff
KITAYAMA, Kaori

Researcher (pt)
SUWANAWAT, Nittikarn

Students
ZHU, Mengshan (D3) INOUE, Hiromu (M2) YANG, Yuanzheng (M2) SHIODA, Yudai (M1)
TSUDZUKI, Taiku (D2) YOUN, Jae Hyung (M2) SAKAMOTO, Daiki (M1) YOSHIDA, Riki (M1)

Scope of Research

Microorganisms are found almost everywhere on Earth. They have a great diversity of capacities to adapt to various environments, including chemically and physically unusual environments. Our main subject is to clarify the molecular basis of environmental adaptations of microorganisms and their application. Specific functions of proteins and lipids with essential roles in environmental adaptation of extremophilic microorganisms are of our particular interest. We also undertake mechanistic analysis of microbial enzymes, in particular, those involved in unique metabolic pathways, and their application.

KEYWORDS
Extremophiles Bacterial Cold-Adaptation Mechanism Polyunsaturated Fatty Acid
Phospholipid Acyltransferase Extracellular Membrane Vesicle

Recent Selected Publications
Conversion of Docosahexaenoic Acid to Eicosapentaenoic Acid by β-Oxidation Enzymes in *Shewanella livingstonensis* Ac10

Shewanella livingstonensis Ac10, a cold-adapted Gram-negative bacterium isolated from Antarctic seawater, produces eicosapentaenoic acid (EPA) at low temperatures. An EPA-less mutant strain (ΔEPA) showed delayed growth and cold-sensitive phenotypes. ΔEPA cultured in the medium supplemented with docosahexaenoic acid (DHA)-containing phospholipids grew normally at low temperatures. Interestingly, the mutant contained not only DHA-containing phospholipids but also EPA-containing phospholipids even though it cannot produce EPA de novo. These results suggested *S. livingstonensis* Ac10 requires EPA or DHA to adapt to low temperatures, and it has an unknown conversion pathway of DHA to EPA to generate EPA selectively. Previous studies demonstrated that first two β-oxidation enzymes, acyl-CoA dehydrogenase (FadE) and 2,4-dienoyl-CoA reductase (FadH), are involved in this conversion of DHA to EPA. Therefore, the conversion pathway is likely identical or similar to the β-oxidation pathway. On the other hand, it is unclear how EPA is produced from DHA by β-oxidation, in which a series of oxidation reactions repeatedly occur to degrade fatty acids into acetyl-CoA in general, and whether the last two β-oxidation enzymes, FadB and FadA, or FadJ and FadI, are involved in this conversion. Gene-deletion analysis of these genes demonstrated that, in the single *fad* mutant strains, EPA converted from DHA was accumulated, and EPA-containing phospholipids were produced. ΔEPA/ΔFadJ had DHA more than the others, and unknown fatty acids predicted as intermediates were observed in the mutant. However, every *fad* mutant, including ΔEPA/ΔFadJ, still has the conversion ability, indicating the redundant role of FadB/FadJ and FadA/FadI in the conversion. Therefore, double knockout strains, ΔEPA/ΔFadBJ and ΔEPA/ΔFadAI, were constructed. In ΔEPA/ΔFadBJ strain, the DHA-to-EPA conversion rate was decreased by 32% compared with ΔEPA. These results revealed the β-oxidation enzymes play a role in the DHA-EPA conversion of this bacterium.

Screening and Identification of Genes Involved in Extracellular Membrane Vesicle Production of *Shewanella vesiculosa* HM13

Extracellular membrane vesicles (EMVs) are lipid nanoparticles secreted by almost all bacteria, and their physiology and biotechnological applications have been attracting significant attention. However, the molecular basis of EMV biogenesis has yet to be fully elucidated. To facilitate the elucidation of bacterial EMV production, a curvature-sensing peptide, nFAAV5-NBD, was developed by using a hyper-vesiculating bacterium, *Shewanella vesiculosa* HM13, as a model organism. nFAAV5-NBD can bind to EMVs of this bacterium but not to the cells. In this study, we applied nFAAV5-NBD to screen a hyper-vesiculation and hypo-vesiculation mutant from the mutant library generated by transposon random mutagenesis (Fig. 2). As a result, we identified 16 or six genes whose transposon insertions caused hyper- or hypo-vesiculation, respectively. Identification of the transposon-insertion site indicated that genes involved in various cell processes, including protein quality control, cell wall synthesis, and signal transduction, are involved in the EMV production of *S. vesiculosa* HM13. A target gene disruption analysis of the identified genes also demonstrated the changes in EMV production of the mutants. These strains obtained in this study would contribute to the elucidation of bacterial vesicle formation mechanisms. Additionally, the hyper-vesiculating mutants obtained from this study would provide a clue for the application of this bacterium, for example, the production of valuable substances as a cargo of EMVs and the development of surface-engineered vesicles.

Figure 1. Putative conversion pathway of DHA to EPA.

Figure 2. Schematic illustration of the high-throughput screening of the mutants with changes in EMV production of *S. vesiculosa* HM13.
Division of Multidisciplinary Chemistry
– Polymer Materials Science –

https://www.sel.kyoto-u.ac.jp/~polymat/index.html

Prof TAKENAKA, Mikihito
(D Eng)

Assoc Prof OGAWA, Hiroki
(D Eng)

Assist Prof NAKANISHI, Yohei
(D Eng)

Assist Techn Staff
ISODA, Kumiko

Students
SEKO, Tamio (D2)
KARITANI, Shu (M2)
SHIRAISHI, Harunori (M1)

HAMAMOTO, Hiroki (D2)
BANDO, Shunsuke (M2)
HOSOMI, Yu (M1)

ARAKAWA, Masato (D1)
MORIMOTO, Ryuji (M2)
SHIMABUKURO, Wataru (M1)

TAMURA, Yukiko (D1)
NOMURA, Yuki (M2)
KUBO, Haruki (UG)

TOBITA, Naoto (UG)
YOSHINO, Syunki (UG)

Scope of Research

The structure and molecular motion of polymer substances are studied, mainly using scattering methods such as X-ray, neutron, and light with intent to solve fundamentally important problems in polymer science. The main projects are studied on 1) the morphologies and the dynamics of self-assembling processes in block copolymers, 2) the hierarchical structures in crystalline polymer and rubber-filler systems, 3) the viscoelastic effects in glassy materials, 4) formation processes and ordering structures in polymer thin films.

KEYWORDS
Polymer Physics
Polymer Properties
Self Assembly
Softmater
Hierarchical Structure

Recent Selected Publications

Anomalous Small-Angle X-Ray Scattering Analyses on Hierarchical Structures of Rubber–Filler Systems

The hierarchical structures of carbon black (CB) in Poly(styrene-ran-butadiene) (SBR) rubber/CB systems vulcanized with sulfur and ZnO were clarified by using anomalous small-angle X-ray scattering (ASAXS) near the Zn absorption edge. The SBR/CB systems vulcanized with sulfur and ZnO are commonly used and quantitative analyses of the hierarchical structures in the SBR/CB systems are needed. However, the hierarchical structures in the SBR/CB systems have not been well investigated since the strong scattering contrast of Zn hinders the quantitative analyses of the hierarchical structures of CB by using X-ray scattering. In this study, we eliminated the effects of Zn on the scattering intensity and obtained the structure factors of CB in SBR/CB systems by using the ASAXS method. By extrapolating the structure factors of CB to a zero-volume fraction of CB, we were able to estimate the particle structure factor of the CB aggregate and found that the CB aggregates consist of the closely-packed CB primary particles. We also found the existence of the large particles of ZnO and the particles of ZnS in the order of 10 nm in the structure factors of Zn.

Figure 1. Schematic for hierarchical structures of filler in rubber. Partial scattering function $P_{\text{CC}}(q)\phi_{\text{CB}}$ of CB for all samples.

Distribution of Oriented Lamellar Structures in Injection-Molded High-Density Polyethylene Visualized via SAXS-CT Method

We successfully reconstructed the spatial distribution of the orientation of the lamellar structures in injection-molded high-density polyethylene (HDPE) using the small-angle X-ray scattering-computed tomography (SAXS-CT) technique, a combination of the SAXS and CT methods. The skin, subskin, and core layers were identified in the obtained images of the distribution. The orientation and thickness in each layer were found to vary with the injection speed, v. At the lowest v of 5 mm/s, a skin layer is formed along the surface of the sample with the lamellar structure oriented in the injection direction. At the center of the sample, the orientation of the lamellar structure is isotropic, i.e., the core layer. Between the skin and core layers, there is the subskin layer where the lamellar structures are oriented perpendicular and parallel to the injection direction. The thickness of the core layer decreases for $5 \leq v \leq 20$ mm/s because the higher elongation of the polymer chains due to the shear deformation is dominant. For $20 \leq v \leq 40$ mm/s, the strength of the fountain flow and the shear deformation affect the thickness of the layers. The core layer corresponds to the outlet portion of the fountain flow. The increase in the fountain flow amount inhibits the higher orientation of polymer chains, resulting in an almost constant thickness of the core layer with v. In the subskin layer, the increase in the higher elongation of polymer chains with v induces an increase in the thickness for $5 \leq v \leq 20$ mm/s. Although the velocity gradient is even more significant, the suppression of the polymer chain orientation by the fountain flow can result in a nearly constant subskin layer thickness for $20 \leq v \leq 40$ mm/s. The flux of polymers originating from the fountain flow oriented perpendicular to the injection direction is dominant. Unlike the exponential changes in the core and subskin layers, the thickness of the skin layer decreases in proportion to the increase in v potentially because the fountain flow effect increases for $5 \leq v \leq 20$ mm/s, suppressing the shear deformation near the mold.

Figure 2. SAXS-CT images in the X-Y plane reconstructed from the SAXS profiles at each ϕ_1 and ϕ_2. Each injection speed condition is $v = 5$ mm/s for (a), 20 mm/s for (b), and 40 mm/s for (c). The injection direction is toward the front of the paper.
Research focus is placed on the molecular origin of rheological properties of various materials. Depending on time and temperature, homogeneous polymeric materials exhibit typical features of glass, rubber, and viscous fluid while heterogeneous polymeric systems exhibit plasticity in addition to these features. For basic understanding of these features, the molecular motion and structures at various scales are studied for polymeric systems in deformed state. Rheological measurements are performed with various rheometers. Auto-correlation of the molecular orientation is also investigated with dynamic dielectric spectroscopy. Analysis of rheological and dielectric behavior elucidates a new aspect of softmatter physics.

KEYWORDS
Rheology, Dielectric Spectroscopy, Soft Matter, Mesoscopic Model

Recent Selected Publications
Rouse Analysis of Nonlinear Rheology of Unentangled Polymer Melts under Fast Shear: Viscoelastic Response to Superposed Oscillatory Strain

Nonlinear rheological behavior of unentangled polymer melts can be described by the Rouse model given that its parameters, spring strength κ, bead friction coefficient ζ, and mean-square Brownian force intensity B, are allowed to change under fast flow/large strain (and to take anisotropic tensorial forms when necessary). Within this model, analytic expressions in terms of those parameters have been obtained for measurable quantities that include viscosity η, the first normal stress difference coefficient Ψ_1, and complex dielectric permittivity ε^*. Those expressions in turn enable us to extract κ, ζ, and B from experimental data of unentangled melts. In particular, the rheo-dielectric ε^* data under shear, recently obtained for unentangled low-M poly (butylene oxide) melt having type-A dipoles (PBO-16k; $M = 16 \times 10^3$), suggest that the tensorial ζ and B have negligibly small off-diagonal components in a range of Weissenberg number Wi up to 1.2. On the basis of that study, we here focus on the complex shear moduli G_\parallel^* and G_\perp^* of the Rouse chain defined as responses to a small oscillatory strain superposed on the steady shear flow, with \parallel and \perp representing parallel and perpendicular superposition, respectively. In the case of negligible off-diagonal components of ζ and B, the Rouse analysis gave a very simple expression of those moduli, $G_\parallel^*(\omega) = b_\parallel^{[G]} G_{eq}^*(\omega \alpha^{[G]})$ with $X = \parallel$ and \perp, where $G_{eq}^*(\omega)$ is the linear viscoelastic (LVE) complex modulus at an angular frequency ω. Namely, in that case, the relaxation time of G_\parallel^* decreases by a factor of $\alpha^{[G]} (<1)$ and its terminal relaxation intensity is enhanced by a factor of $b_\parallel^{[G]} (>1)$, but a relative distribution of the relaxation modes exhibits no change. Furthermore, the Rouse parameters obtained from the η, Ψ_1, and ε^* data of PBO-16k were found to satisfy a specific empirical relationship, $\{G^{[G]}_\parallel \}^2 = 1/\alpha^{[G]} \{G^{[G]}_\parallel \}$. Because $G_\parallel^*(\omega) = G_{eq}^*(\omega) \propto \omega^{1/2}$ at high ω where the LVE Rouse relaxation has not completed, this relationship suggests $G_\parallel''(\omega) = G_{eq}''(\omega)$ at $\omega > 1/\tau^{[G]}_\parallel$ and $G_\parallel''(\omega) < G_{eq}''(\omega)$ at $\omega < 1/\tau^{[G]}_\parallel$, where $\tau^{[G]}_\parallel$ is the terminal viscoelastic relaxation time defined for $G_\parallel^*(\omega)$. This behavior of $G_\parallel''(\omega)$ is superficially equivalent to that expected for a case of disappearance of viscous contributions of low-order Rouse eigenmodes under fast shear discussed in the literature on the basis of the concept of Pincus blob. However, the current Rouse analysis clearly indicated that all eigenmodes keep their viscous contributions with a magnitude determined by ζ and κ under flow, confirming the importance of nonequilibrium changes of ζ and κ in the nonlinear flow behavior of unentangled melts.
Recent Selected Publications

Scope of Research

We design and synthesize unique electronic materials with sophisticated device applications in mind. These materials have novel solid-state aggregation structures or well-defined interface orientation that promote efficient electrical current flow or enhance device lifetime. Electronic devices based on these new materials are then evaluated using advanced measurement techniques, and the results are used to inform the next direction of the materials chemistry. We call this synergistic approach for achieving our research goals “Needs Inspired Fundamental Science”.

KEYWORDS

- Molecular Design and Synthesis
- Molecular Aggregation
- Functional Materials
- Semiconductors
- Perovskite Solar Cells
Synergistic Surface Modification of Tin–Lead Perovskite Solar Cells

Interfaces in thin-film photovoltaics play a pivotal role in determining device efficiency and longevity. In this work, the top surface treatment of mixed tin–lead (≈1.26 eV) halide perovskite films for p–i–n solar cells is studied. Charge extraction is promoted by treating the perovskite surface with piperazine. This compound reacts with the organic cations at the perovskite surface, modifying the surface structure and tuning the interfacial energy level alignment. In addition, the combined treatment with C_{60} pyrrolidine tris-acid (CPTA) reduces hysteresis and leads to efficiencies up to 22.7%, with open-circuit voltage values reaching 0.90 V, ≈92% of the radiative limit for the bandgap of this material. The modified cells also show superior stability, with unencapsulated cells retaining 96% of their initial efficiency after >2000 h of storage in N2 and encapsulated cells retaining 90% efficiency after >450 h of storage in air. Intriguingly, CPTA preferentially binds to Sn^{2+} sites at film surface over Pb^{2+} due to the energetically favored exposure of the former, according to first-principles calculations. This work provides new insights into the surface chemistry of perovskite films in terms of their structural, electronic, and defect characteristics and this knowledge is used to fabricate state-of-the-art solar cells.

Figure 1. Surface modification of tin–lead perovskite films with piperazine and CPTA.

BAr₂-Bridged Azafulvene Dimers with Tunable Energy Levels for Photostable Near-Infrared Dyes

Organic dyes with strong absorption in the near-infrared (NIR) region are potentially useful in medical applications, such as tumor imaging and photothermal therapy. In this work, new NIR dyes combining BAr₂-bridged azafulvene dimer acceptors with diarylaminothienyl donors in a donor–acceptor–donor configuration were synthesized. Surprisingly, it was found that in these molecules the BAr₂-bridged azafulvene acceptor adopts a 5-membered, rather than 6-membered ring structure. The influence of the aryl substituents on the HOMO and LUMO energy levels of the dye compounds was assessed from electrochemical and optical measurements. Strong electron-withdrawing fluorinated substituents (Ar = C_{6}F_{5}, 3,5-(CF_{3})_{2}C_{6}H_{3}) lowered the HOMO energy while preserving the small HOMO–LUMO energy gap, resulting in promising NIR dye molecules that combine strong absorption bands centered around 900 nm with good photostability.

Figure 3. BAr₂-bridged azafulvene dimer for photostable near-infrared dyes.

References

Scope of Research

One of our research is an experimental research for unstable nuclear structures by means of the electron and heavy-ion accelerators. We address the technical development in an RI beam production driven by a high-energy electron beam, an electron scattering from the RI’s in combination with the RI target inserted in an electron storage ring, and the precision mass measurement for extremely short-lived and rare exotic nuclei using a heavy-ion storage ring. We will address some technical development aiming at a nuclear photo-absorption cross-section measurement and the beam recycling in a heavy-ion storage ring to study the nuclear reactions involving rare exotic nuclei.

Recent Selected Publications

Electron Scattering for Determining Charge Density Distribution of Unstable Nuclei

As demonstrated in the 1950s by Hofstadter and his colleagues, high-energy electron scattering is one of the most powerful and reliable methods to reveal the internal structure of atomic nuclei. This is because of the following features: 1) an electron is an elementary particle and has no internal structure, 2) the electro-magnetic interaction is well understood and there is almost no ambiguity in theoretical calculations, and 3) electrons can probe deep inside the nucleus without causing any serious disturbance. In the latter half of the 20th century, many nuclei were investigated by electron scattering, and numerous basic and important features of nuclei, especially stable nuclei, were established.

After progresses of accelerator technique and detector developments, it became possible to artificially create unstable nuclei (RI) and extract them as RI beams. Recently, research on short-lived RIs has become very active all over the world following discoveries of exotic phenomena, such as neutron halo/skin, new magic numbers and disappearance of the magic numbers. Although electron scattering should be useful even for internal structure of such RIs, it has never been applied to short-lived RIs due to difficulty for preparing target with thickness enough to perform electron scattering experiment.

To overcome this challenge, we have developed a groundbreaking technique known as SCRIT (Self-Confining Radioactive Isotope Ion Target). This innovative method leverages the ion trapping of residual gases in an electron ring, a phenomenon typically responsible for electron beam instability but ingeniously utilized in this context.

Following successful commissioning, construction of the SCRIT electron scattering facility (see Fig. 1) began at the RI Beam Factory at RIKEN in 2009 and was completed in recent years.

![Figure 1. Overview of SCRIT electron scattering facility.](image)

Our research has specifically focused on electron scattering experiments targeting atomic nuclei around a neutron magic number of \(N = 82\). Notably, an experiment involving \(^{137}\text{Cs}\), generated by the photofission reaction of uranium, represents the world’s first electron scattering experiment with online produced RI and was published in the Physical Review Letters journal this year. Fig. 2 shows obtained momentum and angular distributions. This achievement has garnered significant attention, including a featured article in Physics Today.

![Figure 2. (a) Reconstructed momentum distribution of scattered electrons, (b) Obtained angular distribution of \(^{137}\text{Cs}\) (pink) and background (blue) and theoretical calculations (solid lines).](image)
Researcher (pt)

MURAKAMI, Masanao (D Sc)

Scope of Research

We are developing cutting-edge high-intensity laser sources and studying experimental research on the laser interaction with matter by using the new laser sources. We are promoting cross-disciplinary research based on high-intensity laser technologies such as development of high-intensity mid-infrared solid-state lasers and fiber lasers, research on particle acceleration and wavelength conversion with plasmas produced by high-intensity ultrafast lasers, development of laser isotope separation method for neutrino research, and search for dark matter using high-intensity lasers.

KEYWORDS

High Power Laser Optics
Ultrafast Laser Physics
Laser-Plasma Interaction Physics
Laser Isotope Separation
Laser Nano-Ablation Physics

Recent Selected Publications

High-Intensity Mid-Infrared Fe:ZnSe Lasers

The mid-infrared (mid-IR) spectral region has long garnered significant interest for its spectroscopic applications. Thermal lamp-based mid-IR light sources have been traditionally employed for trace gas sensing, which is crucial for environmental monitoring, medical diagnostics, and other uses. However, the recent advancements in mid-IR broadband ultrafast lasers have paved the way for pioneering applications. These applications range from generating attosecond pulses, coherent X-ray radiation, creating high-density plasmas, and even contributing to the investigation of dark matter, in addition to their established use in molecular vibrational spectroscopy.

To achieve the desired high intensity in mid-IR lasers, optical parametric amplification (OPA) based laser systems have been the subject of extensive research in recent years. These systems necessitate the use of an ultra-high intensity near-infrared pump laser source. They also require complex femtosecond-scale timing synchronization mechanisms. Such requirements often lead to laser systems that are inherently unstable and not user-friendly, posing significant challenges for both developers and end-users alike.

In our project, we have focused on iron-doped zinc selenide (Fe:ZnSe, as depicted in Fig. 1) as a promising laser gain medium. Fe:ZnSe exhibits a broad emission spectrum centered around the 4-micron wavelength and is capable of supporting ultrafast laser operations with a temporal duration of 100 femtoseconds. Additionally, it possesses an absorption band at the 3-micron wavelength, aligning perfectly with our home-made, world-class high-power continuous wave laser systems, such as erbium-doped ZBLAN fiber lasers and Er:YAP solid-state lasers (in collaboration with Prof. Yasuhara’s group at NIFS). The Fe²⁺ ions’ 3d electronic energy levels in ZnSe facilitate an upper state lifetime of approximately 100 microseconds, which obviates the need for an ultra-high intensity near-infrared pump laser source and sophisticated timing synchronization systems.

Figure 2 shows our mid-infrared laser system, which integrates a home-built seeding apparatus — comprising a Yb:CaF₂ regenerative amplifier and a three-stage KTA OPA — with an Fe:ZnSe amplifier. The entire system, which is compactly assembled on just two optical tables, would offer a robust and user-friendly platform for cutting-edge mid-IR laser research and applications.

Blue-Violet High-Power Diode Laser System for ⁴⁸Ca Isotope Separation

In an effort to confirm the Majorana nature of neutrinos, experiments worldwide are conducting double beta decay studies without neutrino emission (0νββ decay). Given that 0νββ decay is exceptionally rare (with an experimental lower limit half-life of approximately 10³⁰ years), it’s crucial to have a substantial quantity of target nuclei in an ultra-low background setting. Among the various nuclei capable of undergoing double beta decay, ⁴⁸Ca stands out due to its highest Q-value (4.27 MeV), surpassing natural radioactive activities, thereby promising minimal background interference. The CANDLES experiment achieved a background level of roughly 10⁻³ events/keV-yr/(kg of ⁴⁸Ca), using about 305 kg of ⁴⁸CaF₂ scintillator (containing ~7.3 mol of ⁴⁸Ca) as the primary detector [Phys. Rev. D, 103, 092008 (2021)]. To enhance the experiment’s sensitivity, isotope enrichment is imperative due to ⁴⁸Ca’s low natural abundance (0.187%), along with ongoing efforts to further reduce background noise. Traditional enrichment methods like centrifugation and gas diffusion are unfeasible for ⁴⁸Ca, as it lacks a gaseous compound at room temperature, prompting the development of alternative chemical and physical techniques.

Our team is exploring a laser isotope separation (LIS) method for ⁴⁸Ca enrichment. The transition of calcium from its ground state occurs at a wavelength of approximately 422.7 nm, which can be excited using commercially available blue-violet laser diodes (LDs). The linewidth of these external cavity LDs is sufficiently narrow relative to the isotope shift in this transition, which is about several hundred MHz. However, generating around 1000 kg of ⁴⁸Ca for the experiment demands a high-power laser system exceeding kilowatts.

The gallium nitride (GaN) LD is emerging as the most promising laser source for this application due to its efficiency, compactness, longevity, reliability, and cost-effectiveness. Yet, developing a cost-effective technology that combines high power with single frequency in LDs is a challenge. For example, achieving a total optical power of 1 kW could require between 100 and 10,000 LD emitters. It’s crucial that the wavelength of all emitters is precisely stabilized to match the absorption line of the ⁴⁸Ca isotope, with absolute accuracy within a few MHz to counteract the ~60 MHz Doppler broadening of the Ca atomic beam. We are currently devising a method to stabilize the wavelengths of multiple GaN-LDs simultaneously. This technique will enable the scaling of laser power by increasing the number of LDs while preserving the laser wavelength and spectral linewidth, paving the way for practical LIS applications and future isotopic enrichment.

Figure 1. The picture of Fe:ZnSe laser crystal.

Figure 2. The picture of our mid-infrared laser system.
In the field of nanotechnology, the importance of high spatial resolution analysis of materials further increases. We study the structure and the electronic state of materials at atomic scale through direct imaging of atoms or molecules by (scanning) transmission electron microscopy ((S)TEM) combined with energy dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS), which gives the information of elemental and electronic state. And we are studying with the aim of establishing new analytical methods using electron microscopes and evaluating materials using these methods.

Scope of Research

KEYWORDS

STEM
EELS
HAADF
Elemental Mapping
Channeling

Recent Selected Publications

Different Atomic Contrasts in HAADF Images and EELS Maps of Rutile TiO$_2$

High-angle annular dark-field (HAADF) imaging and elemental mapping at the atomic scale by scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS) are widely used for material characterization. Recently, theoretical and experimental electron orbital mapping using STEM-EELS has been reported. Quantitative understanding of the contrast of the image is important to discuss the anisotropy of the orbital in an EELS map.

Figure 1 shows an experimental HAADF image with simultaneously measured Ti-$L_{2,3}$ and O-K elemental maps and the simulated elemental maps. Only the Ti atomic columns are visualized in the HAADF image due to its Z-contrast nature. The Ti and O elemental map measured using EELS show the respective atomic columns (Fig. 1c and d). The O map shows the distorted projected octahedral structure that agrees with the structure model (Fig. 1a), and the atomic shape is an isotropic distribution. On the other hand, the shape of the atom in the Ti map shows an anisotropic elliptical distribution that extends along the long axis of the octahedron, even though the HAADF image does not show such anisotropic contrast. Figures 1e and 1f show the simulated images of O and Ti elemental maps for the same sample thickness as experiment (32 nm). The Ti $L_{2,3}$-map shows anisotropic atomic shape along the long axis of the octahedron like the experimental one. This indicates that Ti maps of TiO$_2$ can show an anisotropic elliptical shape, regardless of the anisotropic electron orbital, because the simulation program (μSTEM) assumes (isotropic) isolated atoms without bonding character. We investigated the electron channeling process to elucidate the cause of the difference of the Ti atomic shape between the HAADF image and Ti $L_{2,3}$-map. Figure 2 shows the probe intensity propagating along the [001] axis of a rutile TiO$_2$ crystal as a function of the thickness, where the cross-section image is observed from the [110] direction along the black line indicated in Fig. 1. Figure 2a–e corresponds to the probe positions as numbered on the top. When the probe is located on a Ti (Fig. 2a and e) or O (Fig. 2c) column, strong electron channeling occurs, by which the incident electrons travel straight along each column. In the case of position 2 (Fig. 2b), the probe incident near an O column is quickly channeled onto the nearby oxygen atomic column. This can be confirmed by the high intensity in the O elemental map (Fig. 1c and 1e) and the low intensity in the Ti elemental map (Fig. 1d and 1f) at the yellow position, which corresponds to probe position 2. On the other hand, in the case of position 4 (Fig. 2d), the probe incident near a Ti column is also channeled onto a nearby Ti column. Therefore, the Ti $L_{2,3}$-edge is highly excited at position 4 due to the delocalization of inelastic scattering (Fig. 2d), whereas the excitation is suppressed at position 2 due to channeling onto the nearby oxygen column (Fig. 2b). It is considered that these processes are main reason for the anisotropic contrast in Ti $L_{2,3}$-map.

It is shown that considering the anisotropic shape of Ti atomic column observed in the Ti elemental map is essential for the quantification and visualization of electron orbitals. Consequently, much care must be taken in interpreting EELS maps.

Figure 1. (a) Projected structure model of rutile TiO$_2$ along the [001] axis. The dashed line shows the unit cell. The lengths of the long and short Ti–O bond in the projected TiO$_6$ octahedron is written. (b) Accumulated experimental HAADF image. Elemental maps of (c) O K- and (d) Ti $L_{2,3}$-edges. Simulated elemental maps of (e) O K- and (f) Ti $L_{2,3}$-edges. The black lines in (b–f) and colour points correspond to the probe positions in Fig. 2.

Figure 2. Probe intensity as a function of thickness in the [001]-oriented rutile TiO$_2$ crystal, where the cross-section image was observed from the [110] direction along the black lines indicated in Fig. 1. The electron probes are located on each triangle labelled 1–5, which correspond to the coloured dots in Fig. 1. (a, e) Probe located on the Ti column and (c) on the O column. The distances between positions 1 and 2 and between positions 4 and 5 are the same. This distance corresponds to the half width at half maxima of the short axis of the elliptical shape of the Ti map. Ti and O atoms are indicated as blue and red circles, respectively.
This laboratory analyzes X-ray crystallographic structures of biological macromolecules and studies the structural biology about the relationships between protein structures and their functions and properties based on the crystal structures. The main research themes are elucidation of the reaction mechanism of enzymes, the relationship between the multiform conformation and the functional variety of proteins, the structural basis for the domain-arrangements of multi-domain proteins or protein-protein interactions, structure determination for structure-based protein engineering and industrial application, and the adaptation strategy of proteins from thermophilic or cold-adapted bacteria.

Recent Selected Publications

Refined Crystal Structure of the Oxygenase Component (GraA) of Resorcinol Hydroxylase

Resorcinol hydroxylase is involved in the first step of the resorcinol catabolic pathway and catalyzes the hydroxylation of resorcinol to hydroxyquinol. This enzyme belongs to the two-component flavin-diffusible monoxygenase (TC-FDM) family and comprises two components: an oxygenase and a flavin reductase. It uses molecular oxygen and reduced flavin for hydroxylation and NAD(P)H for flavin reduction. The smaller component, flavin reductase, generates reduced flavin to allow the oxygenase component to oxygenate the substrate. Thus, the enzymatic reaction is executed in two steps. However, hydroxylation activity requires cooperation between both the components. To understand the structural basis of the catalytic mechanism, we performed a crystal structure analysis of the apo-form of the oxygenase component (GraA) from *Rhizobium* sp. strain MTP-10005. GraA is a tetramer, and its subunit consists of 409 amino acid residues with a mass of 43,305 Da.

N-terminal His-tagged GraA was used for crystallization. The protein solution consisted of 5 mg/ml GraA and 50 mM Tris-HCl pH 8.0. Crystals with suitable sizes for X-ray diffraction experiments were obtained over several days by a sitting drop vapor diffusion method, with a reservoir solution consisting of 17% (w/v) PEG3350 and 0.2 M K$_2$HPO$_4$. They belonged to the tetragonal space group $I4_122$ with unit cell dimensions of $a = b = 101.6$ Å, $c = 319.8$ Å and contained one GraA subunit in asymmetric unit. Diffraction data were collected up to 1.9 Å resolution under cryogenic conditions at beamline BL5A, PF, Tsukuba, Japan. The structure was determined by molecular replacement and refined at 1.9 Å resolution up to $R = 0.162$ and $R_{free} = 0.185$.

GraA is a tetramer of four identical subunits related to one another by three molecular two-fold axes which are identical to crystallographic two-fold axes (Figure 1). A given pair of two subunits in the molecule forms a close dimer and two of the close dimers form a loose dimer. The GraA tetrameric molecule adopts the structure of a dimer of dimers. The subunit consists of three domains (Figure 2). The N-terminal domain (residues Met1–Ala121) has an α-structure mainly of antiparallel α-helices, the central domain has a β-structure of two β-sheets stacked together, and the C-terminal domain (residues Phe218–Tyr409) has a four-helix-bundle structure of long antiparallel α-helices involved in tetramer formation. The part of PEG3350 used as a precipitating agent for the crystallization is located in the space that is encompassed by these three domains (Figure 2). The PEG binds to both the binding site of a portion of isoxaloxazine ring of FAD in the GraA-FAD complex and the putative substrate binding site (Figure 3). The loop region of 13 residues (residues Gly271–Asn283), which is ordered and covers the FAD of another subunit in the GraA-FAD complex, is disordered in this apo-form (Figures 2 and 3).
Our research activity focuses on the development of new molecular transformations, which can contribute to better or ideal synthesis of functional molecules as well as to exploitation of new chemical (metal and carbon) resources. The present research subjects are (1) metal-catalyzed carbon–carbon and carbon–heteroatom bond forming reactions by using universal metals such as iron (2) development of small metallic nanocluster catalysts based on supramolecular approaches (3) utilization of woody biomass as the renewable carbon resources by mild catalytic transformations of wood molecules into useful compounds and materials.

Keywords
- Iron Catalysis
- Organotransformation
- Woody Molecular Transformation
- Supramolecular & Superatomic Catalysis

Recent Selected Publications

Iron-Catalyzed Organic Synthesis

Development of organic transformations using earth abundant transition-metals is becoming more and more important in recent years. Our group focuses on use of iron as a catalyst, and so far developed a variety of iron-catalyzed cross-coupling reactions, some of which can’t be achieved by conventional transition-metal catalysts such as palladium. As a recent representative example, we developed a new bisphosphine ligand, SciPROP-R which enables facile iron-catalyzed Suzuki-type cross-coupling between alkyl chlorides and arylboronates. Based on the mechanistic studies, we proposed a catalytic cycle in which SciPROP-R ligand facilitates the smooth halogen abstraction from alkyl chlorides. Also, we have developed a magnetite nanoparticle-catalyzed oxidation reaction of primary and secondary alcohols assisted by microwave irradiation (Figure 1). Magnetite nanoparticles have the additional advantage of being easily recoverable from the reaction mixture by magneto-separation, which allows them to be successively recycled several times with negligible loss in activity.

Figure 1. Microwave-assisted oxidation of alcohols catalyzed by iron-oxide nanoparticles.

Supramolecular & Superatomic Catalysis

This project focuses on the development of highly active and selective metallic nanoparticle and cluster catalysts. To achieve this purpose, four key methodologies have been developed: 1) creation of reaction field with advanced self-assembly, 2) design of selective molecular transformation with multi-points intermolecular interaction, 3) size selective synthesis of metallic nanoparticles and clusters, and 4) utilization of plasmonic resonance with light. As a recent representative example, we reported a new finding of dual catalytic property of gold nanoclusters originating from two structural components, superatomic core and surrounding staples. The cooperative catalysis enables the cross coupling between photooxidized iminium intermediates and alkynyl-gold species, providing propargylamine derivatives.

Wood Molecular Transformation

Woody biomass is renewable and the most abundant carbon resource on the earth, thus expected to utilize as a feedstock to chemicals and energy toward a sustainable society. This project focuses on the chemical transformation of woody biomass into useful materials under mild catalytic conditions. To achieve this purpose, we have developed two key technologies; 1) direct transformation of woody lignin to fluorescent molecules, 2) one-pot disintegration of wood powder into nanocellulose. As a recent representative example, we reported the development of artificial urushi-coating materials by installing trienyl side chains from natural linolenic acid to the bio-renewable phenoxypropanone compounds obtained from enzymatic degradation of woody lignin.
Prof. SHIMAKAWA, Yuichi (D Sc)
Assoc Prof. KAN, Daisuke (D Sc)
Assist Prof. GOTO, Masato (D Sc)
Techn Staff ICHIKAWA, Noriya (D Eng)

Students
IIHOSHI, Makoto (D2)
ISODA, Yosuke (D2)
SHEN, Yufan (D2)
XIE, Lingling (D2)
CHEN, Chen (D2)
WATANABE, Rei (D1)
ITO, Mayuri (M1)
FUJI, Souta (M1)

Scope of Research

Transition metal oxides have a wide variety of interesting and useful functional properties, including electronic conduction, superconductivity, ferroelectricity, and ferromagnetism. In fact, some of these oxides are used in current electronic devices. Our research mainly focuses on perovskite-structured transition metal oxides with novel functional properties due to complex couplings between their lattices, charges and spins. We are currently exploring such functional oxides with advanced oxide-synthesis techniques such as high-pressure synthesis and epitaxial thin film growth.

KEYWORDS
Solid State Chemistry
Functional Metal Oxides
High Pressure Synthesis
Epitaxial Thin Film Growth
Heterointerface

Recent Selected Publications
Cascade Charge Transitions of Unusually High and Mixed Valence Fe3.5+ in the A-Site Layer-Ordered Double Perovskite SmBaFe\textsubscript{2}O\textsubscript{6}

Phase transitions caused by relieving of charge instability are one of the most important and interesting phenomena in solid state chemistry and condensed matter physics. A typical example was found in Fe\textsubscript{2}O\textsubscript{3}, and the transition is often called the Verwey transition. It occurs when the instability of a mixed valence state of Fe2,5+ at the B site of the spinel-type crystal structure is relieved, resulting in charge-ordered states of Fe2+ and Fe3+, with an accompanying metal-to-insulator transition. Another phase transition caused by relieving charge instability is seen in compounds containing an unusually high valence state of ions. The typical example is Fe4+ seen in the perovskite-type structured CaFeO\textsubscript{3}. Fe4+ in CaFeO\textsubscript{3} shows charge disproportionation to Fe4+ and Fe5+ in a rock-salt manner, which accompanies a metal-to-insulator transition. We are then very interested in the phase transition behaviors of a compound containing ions in both unusually high and mixed valence states. To prepare such a compound, in this work, we used the A-site layer-ordered oxygen-deficient pre-cursor SmBaFe\textsubscript{2}O\textsubscript{5}, which contains the mixed valence state of Fe2,5+ ions. By topochemically oxidizing the compound to fully incorporate oxygen ions into the vacant sites, the A-site layer-ordered double perovskite SmBaFe\textsubscript{2}O\textsubscript{6} with the unusually high and mixed valence state of Fe3.5+ was obtained. We have found that cascade phase transitions are induced in SmBaFe\textsubscript{2}O\textsubscript{6} to relieve the charge instability, described as SmBaFe\textsubscript{3.5+}O\textsubscript{6}→SmBa(Fe3+Fe4+)O\textsubscript{6}→SmBaFe\textsubscript{2}Fe\textsubscript{4+}O\textsubscript{6}→SmBa(Fe3+Fe5+)O\textsubscript{6}. The first Verwey-like charge-order transition occurred at 340 K and was accompanied by a significant structural change and a sudden increase in magnetic susceptibility. The following transition was the charge disproportionation of metastable Fe4+ to Fe3+ and Fe5+, and each of the spins resulted in the antiferromagnetic ground state.

Ultralong Distance Hydrogen Spillover Enabled by Valence Changes in a Metal Oxide Surface

The surface of metal oxides is a fertile platform for chemical reactions and an important subject of investigation. However, experimentally characterizing and understanding surface reactions are challenging, especially when hydrogen is involved in chemical reactions on oxides’ surfaces. The occurrence of hydrogen spillover on oxide surfaces has been established since its discovery in 1964. Furthermore, this phenomenon has been utilized as a reaction route for producing functional materials. Nonetheless, the fundamental characteristics of hydrogen spillover remain elusive. This is because of experimental difficulties in observing hydrogen during chemical reactions. In addition, reaction systems utilizing hydrogen spillover are complex and not well defined. Delineating hydrogen reactions and diffusion on oxide surfaces therefore requires proper design and construction of model (or ideal) reaction systems without such complexities. Recent progress in nanometer-level material techniques enables the fabrication of well-defined model catalytic systems with separated functions. The model systems, consisting of epitaxial films of catalytic oxide supports and metal catalysts located at controlled positions on the supports’ surfaces, are useful for evaluating various phenomena associated with (electro) chemical reactions. Since catalytic supports are reduced in the hydrogen spillover process, tracking hydrogen-spillover-induced changes in model systems enables the “visualization” of hydrogen. Here, in this study, we fabricated catalytic model systems based on Pd-loaded SrFeO\textsubscript{x} (x~2.8) epitaxial films and investigated hydrogen spillover. We show that hydrogen spillover on the SrFeO\textsubscript{x} support extends over long distances (~600 μm). Furthermore, the hydrogen-spillover-induced reduction of Fe4+ in the support yields large energies (as large as 200 kJ/mol), leading to the spontaneous hydrogen transfer and driving the surprisingly ultralong hydrogen diffusion. These results show that the valence changes in the supports’ surfaces are the primary factor determining the hydrogen spillover distance.

Figure 1. Crystal structure of the topochemically oxidized double perovskite SmBaFe\textsubscript{2}O\textsubscript{6} and temperature dependence of magnetic susceptibility of SmBaFe\textsubscript{2}O\textsubscript{6}.

Figure 2. Schematic drawing of ultralong distance hydrogen spillover on SrFeO\textsubscript{x}.
Developing efficient energy storage systems and innovative material production processes is a significant challenge for chemists to contribute to a sustainable society. We plan to approach these problems by using transition metal clusters of which multiple metal atoms work together as catalysts and functional materials. Our laboratory focuses explicitly on creating a new method to synthesize the clusters with atomic precision and applying the obtained clusters to difficult reactions such as the reduction of CO$_2$ and N$_2$.

KEYWORDS

Transition Metal Clusters
Homogeneous Catalysis
Nitrogen Fixation
Bioinorganic Chemistry

Recent Selected Publications

Catalytic N_2 Silylation by the Fe Sites of Cuboidal $[\text{Mo}_3\text{S}_4\text{Fe}]$ Clusters

Biological N_2 fixation is conducted by nitrogenase that employs a unique Fe/Mo-S-C cluster as its catalytic site (FeMoco, $[\text{(R-homocitrate)}\text{MoFe}_7\text{S}_9\text{C}]$). Synthetic counterparts of the FeMoco, metal-sulfur clusters, demonstrated capturing N_2 on rare occasions; nevertheless, the catalytic conversion of this stable molecule has not been achieved despite its relevance to the biological N_2 fixation. This study focuses on capture, activation, and catalytic conversion of N_2 by an Fe atom incorporated into our $[\text{Mo}_3\text{S}_4]$ incomplete-cubane platform bearing bulky Cp ligands. Treatment of these clusters with excess Na and ClSiMe$_3$ under a N_2 atmosphere gave $\text{N}(\text{SiMe}_3)_3$ with up to 248 eq. per cluster. This work exemplifies the N_2-reducing capability of Fe atoms in a S-rich environment, which biological systems have selected to achieve a similar purpose. Further studies are ongoing to unveil the effect of an incorporated metal atom (Fe vs Co or Ni) on catalytic N2 silylation.

Tracing the S Incorporation into the Nitrogenase Cofactor Precursor

FeMoco is arguably one of the most complex metallocofactors in Nature. Its biosynthetic pathway is correspondingly complicated and remains unclear, which hampers applications of this enzyme toward artificial N_2 fixation. In this study, we investigated an enzymatic process by which FeMoco precursor (L-cluster, $[\text{Fe}_8\text{S}_9\text{C}]$) is generated from two $[\text{Fe}_4\text{S}_4]$ clusters on the protein by using a semi-synthetic approach. The study revealed that this process includes a S atom uptake from SO_3^{2-} and that the S atom is replaceable with homologous elements (Se, Te). Moreover, we succeeded in selective observation of the incorporated elements and theoretical simulations supporting the reactions’ feasibility. These results show that nitrogenase requires an S source as an external substrate for its function.

Figure 1. Proposed N_2 binding state of FeMoco and a N_2-bound Mo-Fe-S cluster.

Figure 2. Schematic description of a sulfur uptake from sulfite (SO_3^{2-}) in the biosynthetic pathway of FeMoco.
Recent Selected Publications

Scope of Research

Our research interest is to understand optical and quantum properties of nanometer-structured materials and to establish opto-nanoscience for creation of innovative functional materials. Space- and time-resolved laser spectroscopy is used to study optical properties of semiconductor quantum nanostructures and strongly correlated electron systems in low-dimensional materials. The main subjects are as follows: 1) investigation of optical properties of single nanostructures through the development of a high-resolution optical microscope, 2) ultrafast optical spectroscopy of excited states of semiconductor nanostructures, 3) photophysics of solar cell materials, and 4) engineering material properties with lights.
The Second- and Third-Harmonic Generation from Spin Precession in a Canted Antiferromagnet

Recently, antiferromagnetic spintronics is considered as one of the important next-generation information technologies, owing to the low-loss and non-volatility of spin properties. Therefore, the spin dynamics in antiferromagnets with the resonance at terahertz (THz) frequencies, has attracted much interest. However, because of the lack of strong THz magnetic fields, the THz spin dynamics has not yet been well understood. In this study, we developed a novel micro-resonator to efficiently enhance the magnetic component of THz wave, which allows the generation of the world’s strongest THz magnetic field up to 2 Tesla in an antiferromagnet HoFeO$_3$. By using this strong THz magnetic field, we succeeded in inducing the unprecedentedly large magnetization change and thus generating the second and third harmonics of fundamental spin frequency (Fig. 1), for the first time. Furthermore, our research provides a deep understanding of relationship between the harmonics and the spin structure. The efficient excitation method of spin dynamics and the understanding of nonlinear spin dynamics can help us establish novel nonlinear spintronics at terahertz frequencies.

Figure 1. Spectrum of spin dynamics. Different colors indicate different excitation powers.

Size-Dependent Structural Phase Transition in Single Lead Halide Perovskite Nanocrystals

Lead halide perovskite nanocrystals (NCs) have attracted attention as a new light-emitting material because of their high photoluminescence (PL) quantum yields and bandgap tunability around the whole visible region. Halide perovskites have three crystal structures (orthorhombic, tetragonal, and cubic), and the PL peak energy depends strongly on the crystal structure. However, it is unclear how the NC size affects the phase transition temperature. In this study, we investigated the temperature dependence of the PL spectra in single perovskite APbBr$_3$ (A = FA (HC(NH$_2$)$_2$) and Cs) NCs from 5.5 to 200 K using single-dot PL spectroscopy. For FAPbBr$_3$ NCs, a redshift in PL peak energy due to the orthorhombic to tetragonal phase transition is observed between 100 and 150 K, while CsPbBr$_3$ NCs show no phase transition within the observed temperature range. We found that the phase transition temperature decreases in smaller FAPbBr$_3$ NCs (Fig. 2).

Figure 2. Size dependent orthorhombic-to-tetragonal phase transition temperature (T_{OT}) in FAPbBr$_3$ NCs.

Anomalous Band-Edge Optical Responses in a Two-Dimensional Ferroelectric Halide Perovskite

In two-dimensional (2D) halide perovskites, electrons and holes confined in atomically thin 2D perovskite layers form excitons with extremely large binding energies. The peculiar optical properties emerge from such stable excitons. In addition, because the lattice distortion of the perovskite structure can be controlled by the organic molecular cations contained in 2D halide perovskites, the unique structural properties appear: Large lattice distortion introduced by large-sized organic cations results in the emergence of ferroelectricity in 2D halide perovskites. Therefore, clarifying the correlation between the crystal structure and optical properties is important for understanding the physical properties of ferroelectric halide perovskites and developing new devices. In this study, we measured the temperature dependences of the absorption spectra, second harmonic generation (SHG) intensity, and lattice constants of 2D ferroelectric perovskite (BA)$_2$(EA)$_2$Pb$_3$I$_{10}$ single crystals (BA is n-butylammonium and EA is ethylammonium). We found the anomalous temperature behavior of the Urbach tail of the absorption spectrum exhibiting a significant change at around 200 K. We revealed that this change is correlated with the temperature dependences of the SHG intensity and the in-plane lattice distortion. We concluded that the randomness of the ferroelectric polarizations modifies the linewidth of the band-edge exciton transition and leads to the anomalous temperature dependence of the steepness parameter of the Urbach tail.

References
We are interested in understanding the functioning and evolution of biological systems at varying scales from tiny microbes up to the Earth’s environment, by leveraging rapidly accumulating big data in life science and bioinformatics approaches. We currently focus on 1) the evolution of viruses and their links to the origin of life, 2) microbial ecology in different ecosystems, and 3) the development of bioinformatics methods and biological knowledge resources for biomedical and industrial applications. To fuel these research activities, we take part in environmental sampling campaigns such as Tara Oceans. Our resources and developed tools are accessible through GenomeNet (www.genome.jp) to scientific communities and the public.

Scope of Research

KEYWORDS

- GenomeNet
- Bioinformatics
- Environmental Genomics
- Virology
- Molecular Evolution

Recent Selected Publications

Isolation and Whole Genome Sequencing of Giant Viruses from Lake Biwa, Japan

Giant viruses are double-stranded DNA viruses with extremely large genomes and particles reaching 2.5 megabases and 1.5 µm, respectively. These viruses are ubiquitous in the environment and important drivers for nutrient cycles. Currently, various giant viruses have been isolated, but whole-genome sequences of these viruses are limited because of sequencing costs. Here, we evaluated accuracy of giant virus genome assembly by MinION sequencing, which enables rapid and low-cost sequencing. As MinION sequencing produces error-prone reads, the assembly process generally requires correction by other sequencing platforms. However, recent studies assembled high-quality microbial genomes by MinION sequencing alone. We confirmed that genome assembly constructed by MinION sequencing alone is highly accurate for giant viruses with over 99.98% identity to the reference genome by re-sequencing a prototype giant virus. As a proof of concept, we further sequenced five giant viruses isolated from Lake Biwa, Japan, by using MinION sequencing. Comparison between newly assembled genomes and reference genomes revealed that these isolates represent new species of marseillevirus, pithovirus, and mimivirus. Overall, we propose that genome assembly by MinION sequencing alone is an effective approach for a genome-wide analysis of isolated giant viruses. This research was published in a journal, *Environmental microbiology* (doi: 10.1111/1462-2920.16476).

A Giant Endogenous Viral Element: Evidence of Recent Infection of a Double-Stranded DNA Virus in a Fungus

Fungal virosphere is dominated by RNA viruses, with few single-stranded DNA viruses. So far, no double-stranded DNA virus has been identified in fungi. *Rhizophagus irregularis* is a species of arbuscular mycorrhizal fungus, belonging to the class *Glomeromycetes*. We searched viral signals within chromosome-level genomic assemblies of five different strains of this fungi species. On chromosome 8 of a strain 4401, we discovered a 1.5-megabase region, which showed distinct features from other chromosomal regions with strong viral signals. This viral region harbors five *Nucleocytoviricota* marker genes. Our phylogenetic analysis revealed that these genes are closely related to *Asfarviridae* sequences (Fig. 1). These marker genes remain in single copy and show the same tree topology, which suggest that this viral region originated from a single viral integration event. In the chromosomes of other strains, this viral region is absent. Also, the content of repetitive sequences and transposable elements in this viral region is lower compared to other genomic regions. These findings suggest that the viral region was inserted after the divergence of five *R. irregularis* strains. This work has been published in Zhao et al., *Virus Evolution*, 2023, doi: 10.1093/ve/vead064.

Figure 1. Isolated giant viruses observed under transmission electron microscopy. Names of isolates were shown top left. BNT8A and BSD11G are marseilleviruses. BST12E is a pithovirus. BST10G and BN60m3A are mimiviruses. Bars indicate 500 nm. This figure is modified from that published in Hikida et al. (2023) *Environ. Microbiol.* under the CC BY 4.0 license.

Figure 2. Phylogenetic trees based on core genes of viruses of the phylum *Nucleocytoviricota* based on maximum-likelihood frameworks. Blue circles represent supports that passed confidence cutoff for branches. Yellow represents asfarviruses, and red indicates sequences from the viral region.

(a) Concatenated tree of three polymerases. (b) Tree of mRNA capping enzyme (c) Tree of viral late transcription factor 3.
Recent Selected Publications

On the Compressive Power of Autoencoders Using Linear Threshold Activation Functions

Artificial neural networks have recently been extensively applied to bioinformatics. Among various models of artificial neural networks, autoencoders attract much attention because of their power to generate new objects such as protein sequences and chemical structures. An autoencoder is a layered neural network (Figure 1) consisting of an encoder which compresses an input vector to a lower dimensional vector, and a decoder which transforms the low-dimensional vector back to the original input vector (or one that is very similar). Although it is often mentioned that autoencoders perform dimensionality reduction, a kind of data compression, how data are compressed is not yet very clear. Therefore, we study the numbers of nodes and layers that are required to ensure that each vector in a given set of distinct input binary vectors is transformed back to its original using a autoencoder model with linear threshold activation functions. We show that for any set of distinct vectors there exists a seven-layer autoencoder with the optimal compression ratio, but that there is a set of vectors for which there is no three-layer autoencoder with a middle layer of the same size. We also study the numbers of nodes and layers required only for encoding, and the results suggest that decoding is more difficult than encoding.

Trimming Gene Deletion Strategies for Growth-Coupled Production in Constraint-Based Metabolic Networks: TrimGdel

When simulating genome-scale metabolite production using constraint-based metabolic networks, it is often necessary to find gene deletion strategies which lead to growth-coupled production, which means that target metabolites are produced when cell growth is maximized. One of the best current methods for this problem is the minimal cut set-based method, which utilizes the fact that minimal cut sets in the primal network are the elementary modes in the corresponding dual network. This method is effective when the number of gene deletions is relatively small, but when the number of required gene deletions exceeds 20, the time required for the calculation is often unfeasible. Therefore, a complementing algorithm that is effective even when the required number of gene deletions is approximately 20 to 40 would be helpful because the number of genes that can be deleted in a strain is increasing with advances in genetic engineering technology. In this study, the present author developed an algorithm, TrimGdel, which first computes a strategy with many gene deletions that results in growth-coupled production and then gradually reduces the number of gene deletions while maintaining the production rate and growth rate. The results of the computer experiments showed that, for 34.2% of the target metabolites in iML1515, the genome-scale constraint-based model of Escherichia coli, TrimGdel could calculate gene deletion strategies of size 40 or less (23.6% for between 21 and 40) leading to growth-coupled production. TrimGdel can calculate stoichiometrically feasible gene deletion strategies, especially of sizes 21 to 40, which lead to growth-coupled production of target metabolites, which include useful vitamins such as biotin and pantothenate, for which existing methods could not.

The developed software is available on https://github.com/MetNetComp/TrimGdel

Figure 1. Architecture of an autoencoder.

Figure 2. Each gene deletion strategy is evaluated by the least value of the target metabolite production rate when maximizing the cell growth rate.
Students
JIANG, Zhiqian (RS)
OTAGIRI, Yuan (UG)

Guest Res Assoc
LI, Yufei Xi’an Jiaotong University, China, 2 May 2022–23 April 2023

Scope of Research
We are interested in graphs and networks in biology, chemistry, and medical sciences, including metabolic networks, protein-protein interactions and chemical compounds. We have developed original techniques in machine learning and data mining for analyzing these graphs and networks, occasionally combining with table-format datasets, such as gene expression and chemical properties. We have applied the techniques developed to real data to demonstrate the performance of the methods and find new scientific insights.

KEYWORDS
Bioinformatics Machine Learning Data Mining Artificial Intelligence Systems Biology

Recent Selected Publications

Multiple datasets can be found in any applications. For example, the main E-commerce data is a matrix of individuals (users) and items. Additionally, matrices on user demographic data and item contents can be obtained. In this case, the three matrices can be given, sharing the two dimensions, i.e. those of users and of items. Our focus is personalized medicine, where the main data is a matrix of individuals (patients, eventually cell lines) and their drug responses. The problem to be addressed is the drug response prediction, i.e. to predict unknown effective drugs for patients (cell lines). For this purpose, additional datasets can be used, such as a drug similarity matrix, drug-target interactions (a target is a protein, which is equivalent to the corresponding gene). These relevant data sources are called omics data, particularly in biology. Fig. 1 shows a schematic picture of omics data in drug response prediction, consisting of five matrices, including the main matrix R of drugs vs. cell lines.

Although large-scale omics data have been generated for drug response prediction, many machine learning methods have failed to achieve good performance for multiple heterogeneous data sources, because these methods have been designed for only a single type of data. Thus, a challenging task is to build precise prediction models on diverse data, coming from different sources, which are difficult to compare. In fact, data integration has to overcome several obvious problems, such as different data sizes, complexity, and noisiness. However, more importantly, data-integrative machine learning methods need to decide which information is useful to be incorporated and how significant the information is for the prediction task. This is the most critical problem to be addressed for machine learning models with diverse multi-omics data. For this problem, we propose DIVERSE, a framework to efficiently integrate scientifically diverse data, i.e. genomic, chemical and molecular interaction information. DIVERSE has two unique features: 1) It is methodologically flexible. Most existing studies ignore uncertainty, and hence cannot accept missing values, to predict missing drug responses of cancer cell lines. 2) It allows to compute *importance weights* over given multiple matrices, showing the contribution of the given matrices to prediction. DIVERSE solves these two practically important problems by using a Bayesian setting of matrix factorization. Fig. 2 shows the systematic framework of DIVERSE for the given matrix combination, shown in Fig. 1. In this framework, each dataset is incorporated into the matrix factorization framework of DIVERSE sequentially.

We empirically validated the performance of DIVERSE, comparing with five other methods, including three state-of-the-art methods, under 5x5-fold cross-validation. Experimental results indicate that DIVERSE significantly outperformed all compared methods in both mean-squared error (MSE) and Spearman correlation coefficient (Sc), particularly for out-of-matrix prediction, which is a real-world setting and much harder than in-matrix prediction. Results clearly show the performance advantage of DIVERSE over the current methods for predicting drug responses. Table 1 shows one typical example of the results, where ten methods are compared.

Table 1. MSE and Sc (average scores of 5x5 cross-validation) of ten compared methods in out-of-matrix prediction.

<table>
<thead>
<tr>
<th>Method</th>
<th>MSE ± Std. Dev</th>
<th>Sc ± Std. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVERSE</td>
<td>0.037 ± 0.0017</td>
<td>-</td>
</tr>
<tr>
<td>all-data</td>
<td>0.10 ± 0.02</td>
<td>-</td>
</tr>
<tr>
<td>MultiNetMf</td>
<td>0.11 ± 0.0172</td>
<td>0.117 ± 0.0091</td>
</tr>
<tr>
<td>KRR</td>
<td>0.070 ± 0.0073</td>
<td>0.070 ± 0.0056</td>
</tr>
<tr>
<td>Omics&FV</td>
<td>0.077 ± 0.0011</td>
<td>0.081 ± 0.0026</td>
</tr>
<tr>
<td>DIVERSE3-T</td>
<td>0.001 ± 0.0019</td>
<td>0.017 ± 0.0009</td>
</tr>
<tr>
<td>DIVERSE3-P</td>
<td>0.01 ± 0.0019</td>
<td>0.077 ± 0.0058</td>
</tr>
<tr>
<td>DIVERSE3-G</td>
<td>0.01 ± 0.0015</td>
<td>0.075 ± 0.0049</td>
</tr>
<tr>
<td>DIVERSE3-T</td>
<td>0.01 ± 0.0012</td>
<td>0.057 ± 0.0047</td>
</tr>
<tr>
<td>DIVERSE2-T</td>
<td>0.01 ± 0.0032</td>
<td>0.077 ± 0.0029</td>
</tr>
</tbody>
</table>

Furthermore, the results indicate that the MSE and Sc of DIVERSE were smoothly improved by the step-wise addition of each data set. Table 2 shows the performances of different data integration types of DIVERSE for three different cancer cell line datasets.

Table 2. Average MSE and Spearman correlation scores over 5x5-fold cross-validation for three different types of cancer cell line datasets.

<table>
<thead>
<tr>
<th>Method</th>
<th>MSE ± Std. Dev</th>
<th>Sc ± Std. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVERSE3-T</td>
<td>0.0009 ± 0.0007</td>
<td>0.0089 ± 0.0006</td>
</tr>
<tr>
<td>DIVERSE3-P</td>
<td>0.0099 ± 0.0012</td>
<td>0.021 ± 0.0022</td>
</tr>
<tr>
<td>DIVERSE3-G</td>
<td>0.0062 ± 0.0021</td>
<td>0.008 ± 0.0018</td>
</tr>
<tr>
<td>DIVERSE2-T</td>
<td>0.0007 ± 0.0002</td>
<td>0.024 ± 0.0009</td>
</tr>
<tr>
<td>DIVERSE2-G</td>
<td>0.0009 ± 0.0008</td>
<td>0.040 ± 0.0013</td>
</tr>
</tbody>
</table>

Finally, these advantages of DIVERSE were confirmed by several case studies. Overall, DIVERSE is useful for performing integrative machine learning for given multiple omics data sources, which has not been handled by a regular machine learning algorithm.
HAKUBI RESEARCHERS’ ACTIVITIES IN ICR

Hakubi Project: Fosterage and Support of Young Researchers, Kyoto University
Research Topic

Optoelectronic Energy Recycling and Quantum Cooperative Effects in Semiconductor Nanostructures

Outline of Research

Semiconductor nanostructures are attractive materials that provide a platform to enhance quantum effects. In nanomaterials, strongly-confined electrons and holes form unique quantum states such as multiexcitons, which are hardly generated in bulk semiconductors. Since multiexcitons consist of a few electrons and holes, their generation and dissociation processes have a great potential to increase electric signals in photon-to-current conversion. My research focuses on applications of quantum effects and control of photon-to-current conversion processes in semiconductor nanostructures. I will clarify the microscopic mechanism of photocarrier generation processes in coupled nanostructures and establish a way to recycle thermal and radiative energies.
ACTIVITIES OF INTERNATIONAL JOINT USAGE/RESEARCH CENTER
STARTING-UP SUBJECTS
(IN SPECIFIC FIELDS CHOSEN BY iJURC)

Radiolysis of Concentrated Native Proteins by Accelerated Electrons
RAFFY, Quentin, Institut Pluridisciplinaire Hubert Curien (IPHC)
Host in iJURC: OGAWARA, Ryo

Development of New Nano-Structure Target for ISOL
OHNISHI, Tetsuya, Nishina Center for Accelerator-Based Science, RIKEN
Host in iJURC: WAKASUGI, Masanori

High-Pressure synthesis and Li Conducting Study of Li-Al-Cl Compounds as Solid Electrolytes in Batteries
OHTSUKA, Tetsuya, Nishina Center for Accelerator-Based Science (CSNS), Institute of High Energy Physics (IHEP), Chinese Spallation Neutron Source (CSNS)
Host in iJURC: SHIMAKAWA, Yuichi

Crystal Structures and Oxygen Conduction Properties Research of Metal Oxides at High Temperature
GUO, Haichuan, China Spallation Neutron Source Science Center (CSNS), Institute of High Energy Physics, Chinese Academy of Sciences
Host in iJURC: SHIMAKAWA, Yuichi

Development of Transformation of Lignin–Based Aromatic Building Blocks Using Organocatalyst
HASHIMOTO, Toru, Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University
Host in iJURC: NAKAMURA, Masaharu

Synthesis of Phosphine-Protected Iron Clusters to Study Their Magnetic Properties
SHIGA, Takuya, Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba
Host in iJURC: HIGAKI, Tatsuya

Catalytic Activation of Silicon-Oxygen Bond via Nucleophilic Activation of Silane
KAMEO, Hajime, Department of Chemistry, Graduate School of Science, Osaka Metropolitan University
Host in iJURC: OHKI, Yasuhiro

Asymmetric Synthesis of Planar-Chiral Metallocenes by Plane-to-Plane Chirality Transfer
OGASAWARA, Masamichi, Department of Natural Science, Graduate School of Science and Technology, and Research Cluster on “Functional Material Development for Agro-/Medo-/Pharmaceuticals”, and Tokushima International Science Institute, Tokushima University
Host in iJURC: OHKI, Yasuhiro

Carbon Fixation Catalysts Compared of Well-Defined Cu-Hydride Complexes and Functionalized Organosilica
NAKAJIMA, Takayuki, Department of Chemistry, Faculty of Science, Nara Women’s University
Host in iJURC: OHKI, Yasuhiro

Development of Highly Active Metal Cluster Catalysts by Using Electron Transfer Network
KONDO, Mio, Division of Applied Chemistry, Graduate School of Engineering, Osaka University
Host in iJURC: TANIFUJI, Kazuki

Modulated Luminescence of Coordination Complex under Vibrational Strong Coupling
HIRAI, Kenji, Research Institute for Electronic Science Hokkaido University
Host in iJURC: KANEMITSU, Yoshihiko

Spectroscopic Study of Dot-in-Crystal Perovskites toward Semiconductor Optical Refrigeration
YAMADA, Yasuhiro, Graduate School of Science, Chiba University
Host in iJURC: KANEMITSU, Yoshihiko

Quantum Properties of Lead Perovskite Solar Cells by Two-Dimensional Optical Fourier Transform Spectroscopy
OGAWA, Yoshihiro, Joetsu University of Education
Host in iJURC: KANORI, Hideki

Controlling Hydrogen Spillover on Oxides
HOSOKAWA, Saburo, Faculty of Materials Science and Engineering, Kyoto Institute of Technology
Host in iJURC: KAN, Daisuke

Development of Defective Nickel Oxide Catalysts for Highly Selective Functionalization
Taketoshi, Ayako, Faculty of Engineering, Yokohama National University
Host in iJURC: NAKAMURA, Masaharu

Efficient Synthesis and Physical Properties of π-Extended Molecules Bearing Difluoroboryl or Sulfonyl Groups
MITSUDO, Koichi, Graduate School of Natural Science and Technology, Okayama University
Host in iJURC: WAKAMIYA, Atsushi

A Study on Statistical Machine Learning for Efficient Graph Structured Data Analysis
Karasuyama, Masayuki, Department of Computer Science, Nagoya Institute of Technology
Host in iJURC: MAMITSUKA, Hiroshi

Evaluation of Prediction with MetNetComp Using Tensor Decomposition Based Unsupervised Feature Extraction
TAGUCHI, Yoshihiro, Faculty of Science and Engineering, Chuo University
Host in iJURC: TAMURA, Takeyuki

Control and Analysis of Complex Networks via Probabilistic Minimum Dominating Sets
Nacher, Jose, Department of Information Science, Faculty of Science, Toho University
Host in iJURC: AKUTSU, Tatsuya

1: International Joint Research
2: Female PI
Elucidation of Host-Giant Virus Interaction Using Transcriptomics of Giant Virus-Infected Acanthamoeba Cells
TAKEMURA, Masaharu, Institute of Arts and Sciences, Kagurazaka Division, Tokyo University of Science

Host in iJURC OGATA, Hiroyuki

Development of a Viral Genome Infrastructure for Elucidation of Viral Dark Matter
NISHIMURA, Yosuke, JAMSTEC, Japan Agency for Marine-Earth Science and Technology, Research Center for Bioscience and Nanoscience

Host in iJURC OGATA, Hiroyuki

Combining Tellurium Mediated Radical Polymerization and Multicomponent Polymerization towards Unique Stimuli Responsive Polymeric Copolymers
DEBUIGNE, Antoine, Chemistry Department, Center for Education and Research on Macromolecules, University of Liege, Belgium

Studies of Geometric and Electronic Structure/Reactivity Correlation in Cofacial Metalloporphyrin Dimers
OHTA, Takehiro, Department of Applied Chemistry, Faculty of Education, Sanyo-Onoda City University

Host in iJURC OHKI, Yasuhiro

Synthesis of Self-Assembled Azulene Derivatives Utilizing Boron, and Creation of New Reactions and Functions
WAKABAYASHI, Shigeharu, Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science

Host in iJURC OHKI, Yasuhiro

Controlling of Secondary Structure in Polysiloxane Main Chain and Application for Chiral Silica
HIRAI, Tomoyasu, Department of Applied Chemistry, Osaka Institute of Technology

Host in iJURC TAKENAKA, Mikihito

Exploration of Novel Optical Phenomena in Semiconductors with High Quantum Efficiency of Radiation
KOJIMA, Kazunobu, Graduate School of Engineering, Osaka University

Host in iJURC KANEMITSU, Yoshihiko

Stoichiometry of Bioactive Trace Metals in the Osaka Bay and Its Inflowing River Waters
NAKAGUCHI, Yuzuru, Faculty of Science and Engineering, Kindai University

Host in iJURC SOHRIN, Yoshiki

Study on High Selective Membrane Separation of Metal Ions by Use of Polimer Inclusion Membranes of Ionic Liquid Containing the Metal Complexes
MUKAI, Hiroshi, Faculty of Education, Kyoto University of Education

Host in iJURC SOHRIN, Yoshiki

Fabrication and Characterization of Luminescent Thin Films of Lanthanide Complexes for Solid-State Ion Sensors
MIEDA, Eiko, Department of Chemistry, Graduate School of Science, Osaka Metropolitan University

Host in iJURC HASEGAWA, Takeshi

Physicochemical Characterization of Novel Hybrid Partially Fluorinated Phospholipid Bilayers
SONOYAMA, Masashi, Faculty of Science and Technology, Gunma University

Host in iJURC HASEGAWA, Takeshi

Characterization of Molecular Orientation during Wear of Fluoropolymer
KASUYA, Motohiro, Faculty of Production Systems Engineering and Sciences, Komatsu University

Host in iJURC HASEGAWA, Takeshi

Identification of Active Gibberellins in the Basal Land Plant Marchantia polymorpha
KOCHI, Takayuki, Graduate School of Biostudies, Kyoto University

Host in iJURC YAMAGUCHI, Shinjiro

Preparation and Precise Characterization of Model Two-Dimensional Sheet-Shaped Polymers
DOY, Yuya, Department of Materials Physics, Nagoya University

Host in iJURC SATO, Takeshi

Spin Signals in a Ferrimagnetic Film near the Compensation Temperature
HIROHATA, Atsufumi, Nagoya University, Department of Materials Physics

Host in iJURC ONO, Teruo

Study on the Spin Injection Using Perpendicular Magnetized Ferrimagnetic Conductor Film
TANAKA, Masaaki, Nagoya Institute of Technology

Host in iJURC ONO, Teruo

Demonstration of Topological Phase Control in Chalcogenide Superlattices
MOROTA, Misako, National Institute of Advanced Industrial Science and Technology (AIST)

Host in iJURC ONO, Teruo

EXPANDING SUBJECTS
(IN SPECIFIC FIELDS CHOSEN BY iJURC)

Development of Energy Sensitive Muon Spin Rotation (muSR) Spectrometer
MA, Yue, Meson Science Laboratory, RIKEN

Host in iJURC TSUKADA, Kyo

On the Mechanism of the CO₂ Reduction Catalyzed by Cubic [Mo₃S₄Pd] Clusters: a Computational Study
SAMEERA, W. M. C., Department of Chemistry, University of Colombo

Host in iJURC OHKI, Yasuhiro

Development and Device Evaluation of New D-A Emitters Based on Rigidified Planar Triarylborone Acceptors
MARDER, Todd B., Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg

Host in iJURC KAJI, Hironori

Design and Tailoring Advanced Functional Materials: Symmetry Operation and High Pressure Synthesis
CHEN, Wei-Tin, Center for Condensed Matter Sciences, National Taiwan University

Host in iJURC SHIMAKAWA, Yuichi

High-Performance Materials for Energy Storage Electrochemical Devices
GARCIA MARTIN, Susana, Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense

Host in iJURC SHIMAKAWA, Yuichi
Photocatalytic C-H Bond Functionalization
ALAKANANDA, Hajra, Department of Chemistry, Visva-Bharati University
Host in iJURC NAKAMURA, Masaharu
Development of Unsymmetrical n-Electron Systems of Heavier Main Group Elements and Elucidation of Their Property
IWAMOTO, Takeaki, Department of Chemistry, Graduate School of Science, Tohoku University
Host in iJURC MIZUHATA, Yoshiyuki
Creation of Effective Oxidation Scavenger for Efficient Perovskite-Based Solar Cells
SASAMORI, Takahiro, Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
Host in iJURC WAKAMIYA, Atsushi
A Caging Strategy for Cholinergic Optopharmacology
ARAI, Satoshi, NanoLSI, Kanazawa University
Host in iJURC OHMIYA, Hirohisa
Development and Evaluation of THz-STM for Low-Temperature and High Magnetic Field
TACHIZAKI, Takehiro, School of Information Science and Technology, Tokai University
Host in iJURC KANEMITSU, Yoshihiko
Regioselective C-H Activation Enabled by Substrate Recognition
ILIES, Laurean, Center for Sustainable Resource Science, RIKEN
Host in iJURC AKUTSU, Tatsuya
Development of Co-Facial-Type Dinuclear Complexes
YAMAGUCHI, Yoshitaka, Faculty of Engineering, Yokohama National University
Host in iJURC NAKAMURA, Masaharu
Developing Machine Learning Approaches for Prediction of Protein Stability Changes upon Missense Mutations
SONG, Jiangning, Biomedicine Discovery Institute, Monash University
Host in iJURC AKUTSU, Tatsuya
Integrating Omics Data and Module-Based Network with Deep Learning to Develop Cancer Type Predictive Models
YANG, Jinn-Moon, Department of Biological Science and Learning to Develop Cancer Type Predictive Models
Host in iJURC OHMIYA, Hirohisa
Research and Applications of Main Group Elements and Elucidation of Their Property
MURATA, Yasujiro, Department of Chemistry, Graduate School of Engineering, Osaka University
Host in iJURC Hashikawa, Yoshifumi
Application of Metagenomics and a Temperature-Driven Mathematical Model to Estimate the Global Distribution of Micromonas-Related Viruses
DEMORY, David, CNRS, UMR723
Host in iJURC ENDO, Hisashi
Effective Biomolecular Analysis and Application to Medical and Agricultural Research
KAYANO, Mitsunori, Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine
Host in iJURC MAMITSUKA, Hiroshi
Investigations into Cofactor Biosynthesis of N2-Reducing Enzyme via Semi-Synthetic Approach
RIBBE, Markus W., Chancellor’s professor at Department of Molecular Biology and Biochemistry, Department of Chemistry, University of California, Irvine
Host in iJURC TANIFUJI, Kazuki
Radical-Polar Crossover Catalysis for Synthesis of Complex Natural Products
HAN, Sunkyu, Department of Chemistry, KAIST
Host in iJURC OHMIYA, Hirohisa
Development of Multi-Resonant TADF Emitters with Short Delayed Lifetimes and Their Use in Long Lifetime OLEDs
ZYSMAN-COLMAN, Eli, Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews
Host in iJURC KAJI, Hironori
Design and Synthesis of Linear Molecules for Improving Outcoupling Efficiency of Solution-Possessed OLEDs
RAJAMALLI, Pachaiyappan, Materials Research Centre, Indian Institute of Science, Bangalore
Host in iJURC KAJI, Hironori
Precise Synthesis and Controlling Higher Order Structure of Tailpole-Like Janus Cellulose Nanocrystal
GOTO, Atsushi, School of Physical & Mathematical Sciences - Division of Chemistry & Biological Chemistry Nanyang Technological University
Host in iJURC KINOSUKE, Yuji
Development of Lead Free Metal Halide Perovskite Solar Cells
TACHIBANA, Yasuhiro, School of Engineering, PMT University
Host in iJURC TERANISHI, Toshiharu
Synthesis of Graphene Nanoribbons Containing Non-Hexagonal Rings
CHAOLUMEN, College of Chemistry and Chemical Engineering, Inner Mongolia University (IMU)
Host in iJURC HASHIKAWA, Yoshifumi
Optoelectronic Materials with Open-Cage C60 Derivatives as Building Blocks
ZENG, Sheng, Engineering Research Center for Nanomaterials (ERCN), Henan University
Host in iJURC MURATA, Yasujiro
The Reactivity of Guanidine-Isatins in Prato Cycloaddition Reaction
MARGETIC, Davor, Laboratory for physical organic chemistry, The Reactivity of Guanidine-Isatins in Prato Cycloaddition Reaction
Host in iJURC HASHIKAWA, Yoshifumi
Development of Functional Molecule for Efficient Perovskite Solar Cells
SASAMORI, Takahiro, Department of Chemistry, Graduate School of Engineering, Osaka University
Host in iJURC WAKAMIYA, Atsushi
Electrochemical and Photochemical Degradation Reaction
INAGI, Shinsuke, School of Materials and Chemical Technology, Tokyo Institute of Technology
Host in iJURC OHMIYA, Hirohisa
Light-Driven Organosulfur Catalysis for Sugar Modification
HIRAI, Go, Graduate School of Pharmaceutical Sciences, Kyushu University
Host in iJURC OHMIYA, Hirohisa
Synthesis of Polymers Having Carbazolophane Moiety and Their Application of Hole Transport and CPL Materials
TANI, Keita, Osaka Kyoiku University
Host in iJURC TSUJI, Yoshinobu

Elucidation of Design Principles of Covalent Organic Solid Solutions
SUZUKI, Mitsuharu, Graduate School of Engineering, Osaka University
Host in iJURC MURATA, Yasujiro

Synthesis and Properties of Emissive Triplet Diradicals
SHIMIZU, Akihiro, Graduate School of Engineering Science, Osaka University
Host in iJURC HIROSE, Takashi

Polymerization of Functional Vinyltellurides Prepared by Flow Reactors
NAGAKI, Aiichiro, Faculty of Science, Hokkaido University
Host in iJURC YAMAGO, Shigeru

Study on Dependence of Electron Delocalization on Charged, Spin and Excited States in Conjugated Macrocycles
KISHI, Ryohei, Graduate School of Engineering Science, Osaka University
Host in iJURC KAYAHARA, Eiichi

A Study on Radicals in Macroyclic Systems: SOMO-HOMO Energy Conversion
ABE, Manabu, Graduate School of Advanced Science and Engineering, Hiroshima University
Host in iJURC KAYAHARA, Eiichi

Synthesis and Functionally Development of Donor-Acceptor Cycloparaphenylene Derivatives through Reorganization of Macroyclic Gold Complexes via Dynamic Gold-Carbon Bonds
TSUCHIDO, Yoshitaka, Faculty of Science Division I, Tokyo University of Science
Host in iJURC KAYAHARA, Eiichi

Trace Metal Elemental and Isotopic Composition in the North Pacific Ocean: Sources and Internal Cycling (4)
KO, Tung-Yuan, Research Center for Environmental Changes, Academia Sinica
Host in iJURC SOHRIN, Yoshiki

Resolving the Structure-Dynamics-Property Relationship in Polymer Nanocomposites under Uniaxial Stretching-III
TAKENAKA, Mikihito, Department of Material Science and Chemical Engineering, Stony Brook University
Host in iJURC TAKENAKA, Mikihito

High Frequency Response of Polymeric Liquids: Rheology and Dielectric Relaxation
SUKUMARAN, Sathish K., Graduate School of Organic Materials Science, Yamagata University
Host in iJURC SATO, Takeshi

Ultrafast Exciton Dynamics in Thermally Activated Delayed Fluorescence Molecular Aggregates with Heterogeneous Conformational Distribution
SOTOME, Hikaru, Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University
Host in iJURC KAIJ, Hirohori

Characterization of Quantum Magnon Using Hybrid Magnonic Systems
KIM, Kab-Jin, Department of Physics, Korea Advanced Institute of Science and Technology
Host in iJURC ONO, Teru

Non-Reciprocity of Spin Wave Propagation Generated by Orbital Hall Effect in Transition Metal Dichalcogenides
KIM, Sanghoon, Department of Physics, University of Ulsan
Host in iJURC ONO, Teru

Research Toward Stable NV Centers at Shallow Region and Spin Dynamics in Diamond
BALASUBRAMANIAN, Gopalakrishnan, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
Host in iJURC MIZUOCHI, Norikazu

Research on the Efficiency Enhancement of the NV Centers Creation in Nanodiamond
SEGAWA, Takuya F, Laboratory for Physical Chemistry, ETH Zürich
Host in iJURC MIZUOCHI, Norikazu

Research toward High Sensitive NV Quantum Sensor in Diamond
WRACHTRUP, Jörg, Stuttgart University
Host in iJURC MIZUOCHI, Norikazu

Development of Fe-Based D03 Type Alloys and Its Thermoelectric Property
NAGAHAMA, Taro, Hokkaido University
Host in iJURC ONO, Teru

Research of Surface State for Diamond Quantum Sensor
TOKUDA, Norio, NanoMaterials Research Institute, KANAZAWA UNIVERSITY
Host in iJURC MIZUOCHI, Norikazu

Research of Quantum Technology and Diamond Synthesis for Higher Sensitivity of NV Quantum Sensor
MIZUOCHI, Norikazu

Research on the Efficiency Enhancement of the NV Centers Creation in Nanodiamond
SEGAWA, Takuya F, Laboratory for Physical Chemistry, ETH Zürich
Host in iJURC MIZUOCHI, Norikazu

STARTING-UP SUBJECTS
(ON-DEMAND FROM RELATED COMMUNITIES)

Fabrication of Novel Cell Culture Substrates Using Well-Defined Porous Materials
YOSHIKAWA, Chiaki, National Institute for Materials Science (NIMS), Research Center for Functional Materials
Host in iJURC TSUJI, Yoshinobu

Synthesis and Characterization of Raw and Polymerized Asian Lacquer Samples: towards the Development of a Comprehensive Collection of Lacquer Reference Samples for Materials Science and Conservations Studies
BONADUCE, Ilaria, Department of Chemistry and Industrial Chemistry, University of Pisa
Host in iJURC PINCELLA, Francesca

Analysis of Novel Transporters for Strigolactones or Their Biosynthetic Intermediates
ZHANG, Yunde, Department of Cell and Developmental Biology, University of California San Diego
Host in iJURC MASHIGUCHI, Kiyoshi
Precise Synthesis and Viscoelastic Properties of Ring Polymers with High Purity and High Molecular Weight
TAKANO, Atsushi, Department of Molecular and Macromolecular Chemistry, Nagoya University
Host in iJURC MATSUMIYA, Yumi

Evaluation of Mechanical Properties for Polymer Elastomers with Pseudo-Rotaxane Type Cross-Links
URAKAWA, Osamu, Department of Macromolecular Science, Osaka University
Host in iJURC MATSUMIYA, Yumi

Involvement of Phospholipids in Cytoplasmic Streaming in Plant Cells
UEDA, Haruko, Osaka University, Department of Macromolecular Science
Host in iJURC AYOAMA, Takashi

Analysis of Membrane Lipid-Dependent Fermentation Stress Response in Acetic Acid Bacteria
TOYOTAKE, Yosuke, Department of Biotechnology, Ritsumeikan University
Host in iJURC KURIHARA, Tatsuo

Studies on the Structures and Functions of Two Alanine Dehydrogenases in Geobacillus Kaustophilus
OMORI, Taketo, Department of Biomedical Engineering, Osaka Institute of Technology
Host in iJURC KURIHARA, Tatsuo

Separation of Rare Earth Elements Using Solvent Impregnated Resin Using Surfactants
KURASHI, Kensuke, Environmental and Materials Chemistry Course, Osaka Metropolitan University College of Technology
Host in iJURC SOHRIN, Yoshiki

Observation of Photothermal Conversion in 3D Quantum Dot Superlattices Using Pump-Probe Transient Absorption Spectroscopy
GONOME, Hiroki, Graduate School of Science and Engineering, Yamagata University
Host in iJURC SARUYAMA, Masaki

Development of Cooperative Catalysis by Hybridization of Supported Metal Nanoparticles with Metal Oxide Clusters
YAMAZOE, Seiji, Graduate School of Science, Tokyo Metropolitan University
Host in iJURC TERANISHI, Toshiharu

Study and Experiment of the High-Energy Electron Generation by the High-Power Laser-Irradiation to the Stacked CNT Target
MATSUMIYA, Yumi, Graduate School of Energy Science, Kyoto University
Host in iJURC TOKITA, Shigeki

EXPANDING SUBJECTS
(ON-DEMAND FROM RELATED COMMUNITIES)

Role of PIP5K Genes in Pollen Tube Development
QU, Li-Jia, School of Life Sciences, Peking University
Host in iJURC AYOAMA, Takashi

Molecular Mechanisms of mRNA Processing Governing 3’UTR Ends by Using Plant as a Model System
JARMOLOWSKI, Artur, Department of Gene Expression, Adam Mickiewicz University, Institute of Molecular Biology and Biotechnology
Host in iJURC TSUGE, Tomohiko

Exploiting AtMYB60 Regulation for Water Use Efficiency and Drought Resistance in Crops
GALBIATI, Massimo, National Council of Research (CNR), Institute of Agricultural Biology and Biotechnology (IBBA)
Host in iJURC TSUGE, Tomohiko

Chromatin, Epigenetic and Proteolytic Regulation of RNA Processing in Plant Morphogenesis
RUBIO, Vicente, National Center of Biotechnology (CNB-CSIC), Plant Molecular Genetics Department
Host in iJURC TSUGE, Tomohiko

Self-Assembling Compounds That Selectively Inhibit Protein Phase-Separation
ZHOU, Lu, School of Pharmacy, Fudan University
Host in iJURC UESUGI, Motonari

Development of Cancer Vaccine Adjuvants with Optimized Safety Profiles
LI, Yan-Mei, Department of Chemistry, Tsinghua University
Host in iJURC UESUGI, Motonari

Red and Near-Infrared Multi-Resonance Thermally Activated Delayed Fluorescence Emitters
BEDNAREK, Christin, Karlsruhe Institute of Technology, Institut of Organic Chemistry, IOC
Host in iJURC KURIHARA, Tatsuo

Construction of Heterologous Protein Secretion System at Low Temperatures by Using Cold-Adapted Microorganisms
DAI, Xianzhu, College of Resources and Environment, Southwest University
Host in iJURC KURIHARA, Tatsuo

Structural and Functional Analysis of the Surface Polysaccharides of Outer Membrane Vesicles Released by Bacteria
CORSARO, Maria Michela, Department of Chemical Sciences, University of Naples Federico II
Host in iJURC KURIHARA, Tatsuo

High Pressure Synthesis of the Metastable Rare-Earth Nickelates with Ni-Site Substitutions for Synchronizing Their Electronic Phase Transition and Potential Magnetic Transitions
CHEN, Jikun, School of Materials Science and Engineering, University of Science and Technology Beijing, RP China
Host in iJURC SHIMAKAWA, Yuichi

Formation of Authigenic CaCO$_3$ on the Ocean Floor below the Compensation Depth
CAI, Pinghe, Department of Marine Chemistry and Geochemistry, Xiamen University
Host in iJURC SOHRIN, Yoshiki

Fabrication of Nanotopographical Polymer Surfaces for Bactericidal Properties-V
ENDOH, Maya, Department of Material Science and Chemical Engineering, Stony Brook University
Host in iJURC TAKENAKA, Mikihito

Interdisciplinary Approach to Nanostructured Materials for Applications
BUCHER, Jean-Pierre, Strasbourg Institute of Material Physics
Host in iJURC TERANISHI, Toshiharu

Search for Four-Wave-Mixing in the Vacuum - Unveiling Dark Components in the Universe -
HOMMA, Kensuke, Graduate School of Advanced Science and Engineering, Hiroshima University
Host in iJURC TOKITA, Shigeki
Advanced Oxygen – Mediated Flow Chemistry
THOMAS, Wirth, School of Chemistry, Cardiff University
Host in iJURC NAKAMURA, Masaharu

Novel Strategy for Intracellular Delivery of Nanomedicines
PUJALS, Silvia, Institute for Advanced Chemistry of Catalonia (IQAC)
Host in iJURC FUTAKI, Shiroh

Structural and Functional Analysis of Curvature-Inducing Eptides and Application
ULRICH, S. Anne, Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC) and Institute of Biological Interfaces (IBG-2)
Host in iJURC FUTAKI, Shiroh

Molecular Mechanisms for the Inactivation of a Growth Hormone in Rice
HE, Zuhua, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
Host in iJURC YAMAGUCHI, Shinjiro

Chiral Cyclophenylene with an [2.2]Paracyclophane Core
BRÄSE, Stefan, Karlsruhe Institute of Technology, Institute of Biological and Chemical System, IBCS-FMS
Host in iJURC YAMAGO, Shigeru

Development of Multi-Dimensional Perovskite Light-Emission and Photo-Response Materials
LIN, Hao-Wu, Department of Materials Science and Engineering, National Tsing Hua University, Taiwan
Host in iJURC WAKAMIYA, Atsushi

Correlation of Concentration and Orientation Fluctuations in Mixture of Liquid Crystal/Solvent Isotropic One-Phase State
SHIMADA, Ryoko, Department of Mathematics, Physics and Computer Science, Japan Women’s University
Host in iJURC SATO, Takeshi

Real-Time Visualization of Cellular Phase-Separating Proteins
KIKUCHI, Kazuya, Graduate School of Engineering, Osaka University
Host in iJURC UESUGI, Motonari

Remote Control of Cells by Synthetic Small Molecules
NISHIKAWA, Makuya, Faculty of Pharmaceutical Sciences, Tokyo University of Science
Host in iJURC UESUGI, Motonari

Investigation of Donor-Acceptor Molecular Systems by Quantum Chemical Calculations and Atomic-Scale Spectroscopy
KIMURA, Kensuke, Surface and Interface Science Laboratory, RIKEN
Host in iJURC KAJI, Hironori

Functional Analysis and Applications of Extracellular Vesicles Produced by Intestinal Bacteria
YAMASAKI, Shino, Department of Life Science and Biotechnology, Kansai University
Host in iJURC KURIHARA, Tatsuo

Electrochemical Control of Metal Oxides and Exploration of Their Functional Properties
TSUCHIYA, Takashi, International Center for Materials Nanoarchitectonics , National Institute for Materials Science
Host in iJURC KAN, Daisuke

Polymer-Brush-Decorated Hybrid Particles as Lubricant Additives
OHNO, Kohji, Osaka Metropolitan University
Host in iJURC TSUJII, Yoshinobu

Manipulation of Three Dimensional Structure of Polymer Monoliths by 3D Printer
MURAISE, Hitoki, Kyoritsu Women’s University
Host in iJURC TSUJII, Yoshinobu

Room Temperature Operable CdS/CdTe Type II Dimer-Quantum-dot Diode
MAJIMA, Yutaka, Institute for innovative Research, Tokyo Institute of Technology
Host in iJURC TERANISHI, Toshiharu

Investigation of Cellular Uptake Mechanism Using Extracellular Vesicles
EGUCHI, Akiko, Department of Gastroenterology and Hepatology, Graduate School of Medicine, Meiji University
Host in iJURC FUTAKI, Shiroh

Design of Intracellular Delivery Systems for Extracellular Vesicles
NAKASE, Ikuhiko, Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University
Host in iJURC FUTAKI, Shiroh

Functional Analysis of Non-Canonical Strigolactones as Plant Hormones and Root-Derived Signals
SETO, Yoshiya, School of Agricultural, Meiji University
Host in iJURC YAMAGUCHI, Shinjiro

Development of Structurally Well-Defined Branched Supramolecular Polymers
HAINO, Takeharu, Graduate School of Advanced Science and Engineering, Hiroshima University
Host in iJURC YAMAGO, Shigeru

SUBJECTS FOCUSING OF JOINT USAGE OF iJURC/ICR FACILITIES

Microstructural Investigation by Atomic Resolution Transmission Electron Microscopy of Novel Alloys
CHOMSAENG, Natthaphol, Advanced Materials Engineering, Burapha University
Host in iJURC HARUTA, Mitsutaka

CHAIRUANGSRI, Torranin, Industrial Chemistry, Chiang Mai University
Host in iJURC HARUTA, Mitsutaka
CHU, Ming-Wen, Center for Condensed Matter Sciences, National Taiwan University
Host in iJURC HARUTA, Mitsutaka

High-Pressure Synthesis of Transition Metal Oxides with Novel Properties
JI, Kunlang, Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh
Host in iJURC SHIMAKAWA, Yuichi

Elucidation of Hydrogen and Helium Retention Behavior in Fusion Materials
MIYAMOTO, Mitsutaka, Interdisciplinary Faculty of Science and Engineering, Shimane University
Host in iJURC HARUTA, Mitsutaka

Nano Structural Analysis of Cs$_3$PbBr$_6$/CsPbBr$_3$ Composite for the Development of a Scintillator for Fast Electron Beam Detection with High Efficiency
SAITO, Hikaru, Institute for Materials Chemistry and Engineering, Kyushu University
Host in iJURC HARUTA, Mitsutaka

Optimization of Laser Irradiation Conditions for High-Quality Ion beam Generation by Laser-Driven Ion Acceleration
KOJIMA, Sadaoki, Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology
Host in iJURC TAKITA, Shigeki

Mass Spectrometry Analysis for the Production of Advanced Chemical Materials from the Efficient Chemical Decomposition Process of Cedar Wood Tissue Structure
HATANO, Osamu, Faculty of Medicine, Nara Medical University
Host in iJURC NAKAMURA, Masaharu

Theoretical Design of Low-Dimensional Silicon Material Embedded in a Flat Two-Dimensional Sheet and Exploration for Operating Principles
TAKAHASHI, Masae, Graduate School of Science, Tohoku University
Host in iJURC MIZUHATA, Yoshiyuki

SUBJECTS ENCOURAGING JOINT PROGRAM

Determine the Three-Dimensional Structure of 13C=O Labeled α-Synuclein(61-95) in the Langmuir-Blodgett Film and Supported Phospholipid Bilayer by MAIRS2
WANG, Chengshan, Department of Chemistry, Middle Tennessee State University
Host in iJURC HASEGAWA, Takeshi

High-Efficacy Protein Chemical Synthesis
HOJO, Hironobu, Institute for Protein Research, Osaka University
Host in iJURC FUTAKI, Shiroh

Modulation of In-Cell Protein-Protein Interactions Using Mid-Sized Peptides
TAMAMURA, Hirokazu, Institute of Biomaterials and Bioengineering (IBB-TMDU), Tokyo Medical and Dental University
Host in iJURC FUTAKI, Shiroh

The 17th International Workshop for East Asian Young Rheologists
INOUE, Tadashi, Department of Macromolecular Science, Osaka University
Host in iJURC MATSUMIYA, Yumi
Field-Free Superconducting Diode Effect in Noncentrosymmetric Superconductor/Ferromagnet Multilayers

Abstract

The diode effect is fundamental to electronic devices and is widely used in rectifiers and a-c.-d.-c. converters. At low temperatures, however, conventional semiconductor diodes possess a high resistivity, which yields energy loss and heating during operation. The superconducting diode effect (SDE), which relies on broken inversion symmetry in a superconductor, may mitigate this obstacle: in one direction, a zero-resistance supercurrent can flow through the diode, but for the opposite direction of current flow, the device enters the normal state with ohmic resistance. The application of a magnetic field can induce SDE in Nb/V/Ta superlattices with a polar structure, in superconducting devices with asymmetric patterning of pinning centres or in superconductor/ferromagnet hybrid devices with induced vortices. The need for an external magnetic field limits their practical application. Recently, a field-free SDE was observed in a NbSe\textsubscript{2}/Nb\textsubscript{3}Br\textsubscript{8} interfaces. Here, we present another implementation of zero-field SDE using noncentrosymmetric [Nb/V/Co/V/Ta]\textsubscript{3} multilayers. The magnetic layers provide the necessary symmetry breaking, and we can tune the SDE by adjusting the structural parameters, such as the constituent elements, film thickness, stacking order and number of repetitions. We control the polarity of the SDE through the magnetization direction of the ferromagnetic layers. Artificially stacked structures, such as the one used in this work, are of particular interest as they are compatible with microfabrication techniques and can be integrated with devices such as Josephson junctions. Energy-loss-free SDEs as presented in this work may therefore enable novel non-volatile memories and logic circuits with ultralow power consumption.

Synergistic Surface Modification of Tin–Lead Perovskite Solar Cells

Abstract

The modified cells also show superior stability, with unencapsulated cells retaining 90% of their initial efficiency after >2000 h of storage in N\textsubscript{2} and encapsulated cells retaining 90% efficiency after >450 h of storage in air. Intriguingly, CPTA preferentially binds to Sn2+ sites at film surface over Pb2+ due to the energetically favored exposure of the former, according to first-principles calculations. This work provides new insights into the surface chemistry of perovskite films in terms of their structural, electronic, and defect characteristics and this knowledge is used to fabricate state-of-the-art solar cells.

LiNbO\textsubscript{3}-Type Polar Antiferromagnet InVO\textsubscript{3} Synthesized under High-Pressure Conditions

Abstract

The ambient pressure cation disordered InVO\textsubscript{3} bixbyite has been predicted to form a GdFeO\textsubscript{3}-type perovskite phase under high pressure and high temperature. Contrary to the expectation, InVO\textsubscript{3} was found to crystallize in the polar LiNbO\textsubscript{3}-type structure with a calculated spontaneous polarization as large as 74 \textmu C cm-2. Antiferromagnetic coupling of V3+ magnetic moments and a cooperative magnetic ground state below about 10 K coupled with a polar structure suggest an intriguing ground state of the novel LiNbO\textsubscript{3}-type high-pressure InVO\textsubscript{3} structure.

Nitrogen Reduction by the Fe Sites of Synthetic [Mo\textsubscript{6}S\textsubscript{3}Fe] Cubes

Abstract

N\textsubscript{2} fixation by Nature is performed by nitrogenase, which employs a unique transition metal-sulfur-carbon cluster as its active-site cofactor ([R-homocitrato]MoFe\textsubscript{6}S\textsubscript{3}C], FeMoco). Whereas synthetic counterparts of FeMoco, metal-sulfur clusters, have displayed binding of N\textsubscript{2} in a few examples, the reduction of N\textsubscript{2} by this class of compounds has been unknown. Here we show that the Fe atoms in our [Cp\textsubscript{3}Fe\textsubscript{6}Mo\textsubscript{3}S\textsubscript{3}] cubes (Cp\textsubscript{3}Fe\textsubscript{6}Mo\textsubscript{3}S\textsubscript{3}C\textsubscript{2}, C\textsubscript{5}Me\textsubscript{4}SiMe\textsubscript{4} Cl) capture an N\textsubscript{2} molecule and catalyze N\textsubscript{2} silylation to form N(SiMe\textsubscript{4}), under treatment with excess Na and Me\textsubscript{3}SiCl. These results exemplify the first catalytic N\textsubscript{2} reduction by a synthetic metal-sulfur cluster with an Fe center supported only by S ligands. This work demonstrates the N\textsubscript{2}-reducing capability of Fe atoms in a S-rich environment, which Nature has selected to accomplish a similar purpose.

“Mammonoviridae”, a Proposed New Family of the Phylum Nucleocytoviricota

Abstract

Acanthamoeba castellanii medusavirus J1 is a giant virus that was isolated from a hot spring in Japan in 2019. Recently, a close relative of this virus, named medusavirus stheno T3, was isolated from a phylum Nucleocytoviricota. This work demonstrates the N\textsubscript{2}-reducing capability of Fe atoms in a S-rich environment, which Nature has selected to accomplish a similar purpose.

*Permission to use this abstract was obtained from Springer Nature by Hiroyuki Ogata.
VISITING PROFESSORS’ ACTIVITIES IN ICR
Visiting Professors' Activities in ICR

<table>
<thead>
<tr>
<th>Vis Prof</th>
<th>Prof OOI, Takashi (D Sc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory of Synthetic Organic Chemistry</td>
<td>Professor, Nagoya University (Chikusa, Nagoya, Aichi 464-8601)</td>
</tr>
<tr>
<td>Lecture at ICR</td>
<td>Toward Catalytic Control of Photo-induced Radical Reactions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vis Prof</th>
<th>Prof SODEOKA, Mikiko (D Pharm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory of Chemical Biology</td>
<td>Chief Scientist, Synthetic Organic Chemistry Laboratory, RIKEN (2-1, Hiroshima, Wako, Saitama 351-0198)</td>
</tr>
<tr>
<td>Lecture at ICR</td>
<td>1. Development of Bifunctional Fluoroalkylation 2. Reactions Turn-ON Fluorescent Affinity Labeling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vis Prof</th>
<th>Prof TANAKA, Keiji (D Eng)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory of Polymer Materials Science</td>
<td>Distinguished Professor, Department of Applied Chemistry, Kyushu University (744 Motooka Nishi-ku, Fukuoka 819-0395)</td>
</tr>
<tr>
<td>Lecture at ICR</td>
<td>Innovative Adhesion Technology Based on 4-dimensional Multi-Scale Analysis of Interfaces</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vis Prof</th>
<th>Prof GARCIA MARTIN, Susana (Ph D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory of Advanced Solid State Chemistry</td>
<td>Professor, Department of Inorganic Chemistry, Complutense University of Madrid (Plaza de las Ciencias Ciudad Universitaria 28040, Madrid, Spain)</td>
</tr>
<tr>
<td>Lecture at ICR</td>
<td>Recent Research Activities in Complutense University of Madrid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vis Assoc Prof</th>
<th>Prof SHINYA, Hikari (D Sc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory of Laser Matter Interaction Science</td>
<td>Project Associate Professor, Center for Spintronics Research Network (CSRN), The University of Tokyo (7-3-1 Hongo, Bunkyo, Tokyo 113-8656)</td>
</tr>
<tr>
<td>Lecture at ICR</td>
<td>First-Principles Studies on Spintronics Materials</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vis Assoc Prof</th>
<th>Prof IMADA, Hiroshi (D Eng)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory of Nanospintronics</td>
<td>Associate Professor, Department of Chemistry, University of Colombo (00300, Colombo, Sri Lanka)</td>
</tr>
<tr>
<td>Lecture at ICR</td>
<td>Introduction to Computational Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vis Assoc Prof</th>
<th>Prof NATSUME, Yayoi (D Agr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory of Molecular Materials Chemistry</td>
<td>Senior Researcher, Surface and Interface Science Laboratory, RIKEN (Wako, Saitama 351-0198)</td>
</tr>
<tr>
<td>Lecture at ICR</td>
<td>Developing Various Dimer Systems Based on Single-Molecule Manipulation Techniques and Evaluation of Their Optical Properties</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vis Assoc Prof</th>
<th>Prof YASUHARAMA, Ryo (D Eng)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory of Bio-knowledge Engineering</td>
<td>Project Leader, National Institutes of Biomedical Innovation, Health and Nutrition (7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085)</td>
</tr>
<tr>
<td>Lecture at ICR</td>
<td>Exploring Possible Drug-Target Molecules Based on Network Data-Driven Integrative Machine Learning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prof Em / Specially Appointed Prof</th>
<th>Prof TOKITOH, Norihiro (D Sc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory of Bio-knowledge Engineering</td>
<td>Project Leader, National Institutes of Biomedical Innovation, Health and Nutrition (7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085)</td>
</tr>
<tr>
<td>Lecture at ICR</td>
<td>Exploring Possible Drug-Target Molecules Based on Network Data-Driven Integrative Machine Learning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prof Em / Specially Appointed Prof</th>
<th>Prof KANEHISA, Minoru (D Sc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory of Bio-knowledge Engineering</td>
<td>Project Leader, National Institutes of Biomedical Innovation, Health and Nutrition (7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085)</td>
</tr>
<tr>
<td>Lecture at ICR</td>
<td>Exploring Possible Drug-Target Molecules Based on Network Data-Driven Integrative Machine Learning</td>
</tr>
</tbody>
</table>
PERSONAL
On March 31st, 2024, Dr. Takashi Aoyama retired from Kyoto University after 39 years of service and was honored with the title of Professor Emeritus of Kyoto University.

Dr. Aoyama was born in Osaka Prefecture on November 7th, 1958. He graduated from the Faculty of Science, Kyoto University, majoring in Biological Sciences in 1981. He then proceeded to Graduate School of Science, Kyoto University, where he studied molecular mechanisms of gene expression regulation under the supervision of late Professor Mitsuru Takanami. In 1985, he left Graduate School to be appointed as Research Associate at Institute for Chemical Research, Kyoto University. In 1988, he was appointed Assistant Professor of Institute for Chemical Research, Kyoto University, and promoted to Associate Professor in 1994, and to Professor in 2009, directing the Laboratory of Molecular Biology. In 1987, he was granted a doctoral degree with the thesis entitled “Essential structure of E. coli promoter”. On leave from the University during 1991 to 1993, he joined the Laboratory of Plant Molecular Biology, directed by Professor Nam-Hai Chua at The Rockefeller University.

Dr. Aoyama devoted himself in understanding the molecular function regulating gene transcription. His research started from studying the basic structure sequence elements determining the promoter function in Escherichia coli. Then he elucidated the gene expression control mechanism for T-DNA transfer and its integration into a plant nuclear genome from Agrobacterium rhizogenes and A. tumefaciens species. During his stay at The Rockefeller University, he develop a novel chemical induction system for transcription in plants, utilizing the regulatory mechanism of vertebrate steroid hormone receptors. He developed a chimeric transcription factor that combined the receptor domain of the mammalian glucocorticoid receptor GR, the transcription activation domain of the herpesvirus transcription factor VP16, and the DNA binding domain of the Saccharomyces cerevisiae transcription factor GAL4. By expressing this chimeric transcription factor GVG in transformed plants, he established a chemical transcription induction system that effectively works in individual plants, for the first time. Today, this novel system is openly used in basic research and is applied in the commercial research field through licensed patents.

His investigation of the transcriptional control network in plant cell morphogenesis, and the following elucidation of the regulation in plant lipid signaling, were all founded on his unique style of research utilizing reverse genetic methods and plant transformants. He took advantage of the chemically induced reverse genetic methods to investigate the downstream of the transcription factor GL2, which plays a central role in the formation of single-celled trichomes and root hairs. He designed an extensive gene search strategy using the model plant Arabidopsis thaliana, and identified genes encoding the lipid metabolic enzyme PLDζ1 and genes encoding bHLH-type transcription factors as direct target genes. Achievements on PLDζ1 were published in the Science journal in 2003 and was featured on the cover page, as important evidence showing the involvement of lipid signaling in plant cell morphogenesis.

He then expanded his research interests to the role of lipid signals in plant cell morphogenesis, and analyzed the biological functions of PLD and PIP5K. Studies using root hair cells and pollen, as a model for single cell morphogenesis, revealed that PIP5K and its product PI(4,5)P2 play a central role together with small G proteins in establishing and maintaining intracellular polarity. In addition to this, the research of analyzing the loss of function mutants of the nine major PIP5K genes of Arabidopsis and their multiple mutants have been internationally recognized as diligent, outstanding, field-leading work, to the complete the serial elucidation of the role of PI(4,5)P2 signals in plants.

He has been invited to give keynote lectures at numerous international conferences. His achievements have been published in 70 original academic papers in international journals, 15 reviews and commentaries, and 11 co-authored books. He has also contributed to the field of plant science, serving as the secretary-general of the Japanese Society of Plant Physiologists and on the editorial board of the international journal, Plant Cell and Physiology.

Throughout his career, he enlightened many followers not only at Kyoto University but also at other universities and institutes with his thoughtful character. His contribution to Kyoto University and the Institute for Chemical Research through his scientific, educational, and administrative activities is hereby greatly acknowledged.
On March 31st 2024, Professor Yoshihiko Kanemitsu retired from Kyoto University and was honored with the title of Professor Emeritus of Kyoto University. Dr. Kanemitsu joined the Institute for Chemical Research in 2004 as a professor of physics. He set up a new laboratory for semiconductor physics and optical materials science as part of the International Research Center of Elements Science.

Throughout his academic career, Professor Kanemitsu has explored unique optical and electronic properties of semiconductors by applying various laser spectroscopic techniques. Semiconductor bulk crystals and nanomaterials are widely used in solar cells, light-emitting diodes, lasers, and other optoelectronic devices. His fundamental work has contributed to our basic understanding of semiconductor photophysics, helped improve the performance of optoelectronic devices, and led to the development of new concepts in optoelectronics. His outstanding achievements center on the exciton physics of semiconductor nanomaterials and the photophysics of perovskite-type semiconductors.

Professor Kanemitsu developed space- and time-resolved laser spectroscopy apparatus and methods for the study of optical properties of semiconductor quantum structures, including single-dot spectroscopy, photon correlation spectroscopy, and femtosecond transient absorption spectroscopy. He studied the luminescence spectra of isolated carbon nanotubes and single nanocrystals at low temperatures and elucidated their complicated excited state structures. He also clarified the important role of excitons, trions, and biexcitons in governing the luminescence spectra of carbon nanotubes and nanocrystals. In addition, he discovered the coherent state of multiple excitons in nanocrystals, as well as high-order harmonic light emission from nanocrystals. These findings highlight the importance of precise control of the exciton dynamics and exciton complexes for improving the performance of nanomaterial-based photonic devices. He also presented new device concepts based on nanomaterials with high-efficiency nonlinear optical response.

Professor Kanemitsu has also contributed extensively to the area of metal-halide perovskite semiconductors. After showing that halide perovskites are direct-gap semiconductors, he confirmed that the efficient luminescence is due to free carrier band-to-band recombination. He also discovered the phenomena of efficient photon recycling in thick perovskite single crystals. These seminal studies explained the reasons why halide perovskites are such excellent materials for solar cells. Along the way, he explored unique nonlinear optical phenomena such as high-order harmonic light emission, the Autler-Townes effect, and negative thermo-optic coefficients in these materials. His pioneering works in this area opened a new avenue of semiconductor optics and optoelectronic applications.

As a leading scientist in his field, Professor Kanemitsu has many other accomplishments. He served as the chairman of the 125 Committee on Mutual Conversion between Light and Electricity, The Japan Society of the Promotion of Science, and as an R&D management committee member of the ALCA and MIRAI programs, Japan Science and Technology Agency. He is also a member of several advisory committees of international conferences for optical spectroscopy of condensed matter. He established the Endowed Research Section at the Institute for Chemical Research supported by the Sumitomo Electric Group CGR Foundation.

Throughout his career, Professor Kanemitsu has published over 400 papers and presented many invited talks at international conferences and meetings. His achievements have been internationally recognized, and he has received many awards and prizes including the Marubun Research Encouragement Award (1998), Phosphor Award (2004), The Ichimura Prize in Science for Distinguished Achievement (2005), The Inoue Prize for Science (2006), The Yazaki Science Award (2006), The Eto-Hosoya Prize (2018), The Shimadzu Prize (2019), The Kato Memorial Award (2019), The Ichimura Prize for Science against Global Warming for Distinguished Achievement (2021), The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology (2022). In 2023 he was made a fellow of the Japanese Society for Applied Physics.

His contribution to Kyoto University through his scientific, educational, and administrative activities is acknowledged. His warm and sincere personality will remain deep in the hearts of his colleagues and students.
Awards

TAMAO, Kohei

Order of Culture
Cabinet Office, Government of Japan
3 November 2023

SARUYAMA, Masaki

Nanoscale Horizons Award
The 21st Annual Meeting of the Society of Nanoscience and Technology
“Structural Control of Three-Dimensional Nanocrystal Superlattice”
The Society of Nano Science and Technology
13 May 2023

KANEHISA, Minoru

Highly Cited Researcher 2023
Clarivate
15 November 2023

HERBSCHLEB, Ernst David

The 10th Japan Physical Organic Chemistry Award
“The 74th Divisional Meeting of Division of Colloid and Surface Chemistry
“Synthesis of 3D Ag Nanoparticle Superlattices and Their Structure-Specific Functions”
The Chemical Society of Japan
31 October 2023

ZHU, Lingkai

Oral Presentation Award for Young Scientist
The 74th Divisional Meeting of Division of Colloid and Surface Chemistry
“The Study of Coherence in Solid Materials and its Exploitation for Quantum Sensing”
The Physical Society of Japan
23 March 2023

TOKITO, Norihiro

The Young Scholar Lectures of the Chemical Society of Japan
“The 74th Divisional Meeting of Division of Colloid and Surface Chemistry
“Carbocation Generation through Light-Driven Radical-Polar Crossover and the Application to Bond Formation Reaction”
The Chemical Society of Japan
22 March 2023

NAGAO, Kazunori

The Young Scholar Lectures of the Chemical Society of Japan
“The 74th Divisional Meeting of Division of Colloid and Surface Chemistry
“Carbocation Generation through Light-Driven Radical-Polar Crossover and the Application to Bond Formation Reaction”
The Chemical Society of Japan
22 March 2023
KARUBE, Shutaro
The Japan Institute of Metals and Materials Young Researcher Award
“Creation of Novel Spin-Orbit Materials and Research on the Principle of Spin Current Generation”
The Japan Institute of Metals and Materials
20 September 2023

TAGA, Kotaro
Student Presentation Award of the Physical Society of Japan (Division 3)
JPS 78th Annual Meeting
“Frequency and Magnetic Field Angle Dependence of the Coupling between Spin Wave and Surface Acoustic Wave in NiFe Thin Film”
The Physical Society of Japan
14 October 2023

NARITA, Hideki
Young Scientist Research Award
The 14th JSAP Superconductors Division
“Field-Free Superconducting Diode Effect in Noncentrosymmetric Superconductor/Ferromagnet Multilayers”
JSAP Superconductors Division
15 March 2023

IMANISHI, Miki
The 28th SJWS Award
“The 28th SJWS Award
“Development of an Enzymatic Detection Method for RNA Methylation and Its Application”
The Society of Japanese Women Scientists
28 May 2023

FUNADA, Shinsaku
The 54th JSAP Young Scientist Presentation Award
The 70th JSAP Spring Meeting 2023
“Electrical Detection of Antiferromagnetic Dynamics in GdCo Thin Films by Using a 154 GHz Gyrotron Irradiation”
The Japan Society of Applied Physics
19 September 2023

KURIYAMA, Masashi
Best Presentation Award for Young Scientists
The 96th Annual Meeting of the Japanese Biochemical Society
“The 96th Annual Meeting of the Japanese Biochemical Society
“Correlation Analysis Between Peptide-mediated Intracellular Delivery Efficiency and Gene Expression”
The Japanese Biochemical Society
31 October 2023
MICHIBATA, Junya

The Best Student Presentation Award (Oral)
The 143rd Annual Meeting of the Pharmaceutical Society of Japan
“Liquid-Liquid Phase Separation Formation by Macromolecule Delivery Peptides Bearing Polysaccharides and its Application for Cytosolic Antibody Delivery”
The Pharmaceutical Society of Japan
25 April 2023

Best Presentation Award
The 24th Symposium on Drug Interactions with Biological Membranes
“Microparticle Formation by Macromolecule Delivering Peptides Bearing Polysaccharides and its Application for Cytosolic Antibody Delivery”
Division of Physical Sciences, The Pharmaceutical Society of Japan
20 October 2023

OTONARI, Kenko

Chairman’s Special Award
The 24th Annual Meeting of the RNA Society of Japan
“Development of Higher Sequence-Selective and Timing-Controlled m6A Demethylation Tool”
RNA Japan
7 July 2023

Best Presentation Award for Young Scientists
The 96th Annual Meeting of the Japanese Biochemical Society
“Creation of Higher Sequence-Selective and Timing-Controlled m6A Demethylation Tool”
The Japanese Biochemical Society
31 October 2023

NAKAGAWA, Yuna

Excellent Presentation Award
The 2022 Master’s Thesis Presentation at Graduate School of Pharmaceutical Sciences, Kyoto University
“Intracellular Delivery of Extracellular Vesicles Using Macropinocytosis-Inducing Peptide”
Graduate School of Pharmaceutical Sciences, Kyoto University
24 March 2023

Best Presentation Award
The 24th Symposium on Drug Interactions with Biological Membranes
“Improvement of the Membrane Fusion of Extracellular Vesicles by Loading SARS-CoV-2 Spike Proteins”
Division of Physical Sciences, The Pharmaceutical Society of Japan
20 October 2023

TOH, Kohei

ICR Award for Graduate Students
“Intracellular Delivery of Extracellular Vesicles Using Macropinocytosis-Inducing Peptide”
Institute for Chemical Research, Kyoto University
1 December 2023
SATO, Hiroki

The 54th JSAP Young Scientist Presentation Award
The 70th JSAP Spring Meeting 2023
“Analysis of Charge Traps in Organic Amorphous Film by Multiscale Simulation”
The Japan Society of Applied Physics
19 September 2023

HASEGAWA, Takeshi

Academic Award
“Development of Multiple-Angle Incidence Resolution Spectrometry and its Applications in Thin Film Science”
The Spectroscopical Society of Japan
5 October 2023

TAKANO, Shotaro

The Okada Prize
The 2023 Fall Meeting of the Oceanographic Society of Japan
“Development of an Analytical Method for Trace Metal Isotopes and Its Application to Marine Chemistry”
The Oceanographic Society of Japan
1 April 2023

The Japan Society for Analytical Chemistry Award for Younger Researchers, 2023
The 72nd Annual Meeting of the Japan Society for Analytical Chemistry
“Isotopic Analysis of Trace Metals for Geochemistry and Marine Chemistry”
The Japan Society for Analytical Chemistry
14 September 2023

ZHENG, Linjie

Young Scientist Award
The 119th meeting of the Japan Society for Plasma Spectrochemistry
“Establishment of a Simultaneous Analysis for Nine Trace Metals (Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in Seawater and Elucidation of their Sectional Distribution in the Pacific Ocean”
The Japan Society for PLASMA Spectrochemistry
12 May 2023

ZHENG, Linjie

Young Scientist Award
The 119th meeting of the Japan Society for Plasma Spectrochemistry
“Establishment of a Simultaneous Analysis for Nine Trace Metals (Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in Seawater and Elucidation of their Sectional Distribution in the Pacific Ocean”
The Japan Society for PLASMA Spectrochemistry
12 May 2023

NAKAMURA, Tomoya

NIPPON SHOKUBAI Award in Synthetic Organic Chemistry
“The Development of Monolayer Electron-Collecting Materials for Efficient Lead-Free Perovskite Solar Cells”
The Society of Synthetic Organic Chemistry, Japan (SSOCJ)
15 February 2023

The 12th Research Encouragement Award for Chemical Innovation
“Material Chemistry Approach for High-Performance Perovskite Tandem Solar Cells”
Japan Association for Chemical Innovation (JACI)
26 June 2023

ZHU, Mengshan

Young Presentation Award
The 96th Annual Meeting of the Japanese Biochemical Society
“A Predicted Glycosyl Transferase Plays a Crucial Role in the Biogenesis of Extracellular Membrane Vesicles of Shewanella vesiculosa HM13”
The Japanese Biochemical Society
31 October 2023

NAKAMURA, Tomoya

NIPPON SHOKUBAI Award in Synthetic Organic Chemistry
“The Development of Monolayer Electron-Collecting Materials for Efficient Lead-Free Perovskite Solar Cells”
The Society of Synthetic Organic Chemistry, Japan (SSOCJ)
15 February 2023

The 12th Research Encouragement Award for Chemical Innovation
“Material Chemistry Approach for High-Performance Perovskite Tandem Solar Cells”
Japan Association for Chemical Innovation (JACI)
26 June 2023
TRUONG, Minh Anh
ICR Award for Young Scientists
“Tripodal Triazatruxene Derivative as a Face-on Oriented Hole-collecting Monolayer for Efficient and Stable Inverted Perovskite Solar Cells”
Institute for Chemical Research, Kyoto University
1 December 2023

DOBA, Takahiro
Inoue Research Award for Young Scientists
“Iron-Catalyzed C–H/C–H Coupling for Synthesis of Functional Small Molecules and Polymers”
Inoue Foundation for Science
14 December 2023

HIRA, Shota
Innovative PV Encouragement Award
The 20th Next Generation Photovoltaic Power Generation System Symposium (1st Symposium of The Japan Photovoltaic Society)
“Hole-Collecting Monolayer Materials based on Squaraine Structures for Perovskite Solar Cells”
The Japan Photovoltaic Society (JSES)
31 August 2023

MINEO, Keito
The Japanese Forest Society Student Award
“History of Policies Related to the Supply of Large Timber in Japanese National Forests”
The Japanese Forest Society
25 March 2023

TOKITA, Shigeki
Distinguished Progress Award
“Development of Innovative Power Laser - Conduction-Cooled Active-Mirror Laser”
The Laser Society of Japan
31 May 2023

SHIMAKAWA, Yuichi
Japan Society of Powder and Powder Metallurgy Award for Distinguished Achievements in Research
“Synthesis of New Transition-Metal Oxides Showing Novel Properties”
Japan Society of Powder and Powder Metallurgy
6 June 2023

Kiyomura, Tsutomu
Technical Support Contribution Award
The 22nd International Nanotechnology Exhibition & Conference
“Support for Fine-Structure Analysis by Transmission Electron Microscopy”
ARIM Japan
1 February 2023
OHKI, Yasuhiro

The Chemical Society of Japan Award for Creative Work
The 103rd CSJ Annual Meeting
“Synthesis of Biomimetic Cluster Complexes and Reduction of Inert Small Molecules”
The Chemical Society of Japan
23 March 2023

CHO, Kenichi

ICR Award for Graduate Students
“Exciton-Phonon and Trion-Phonon Couplings Revealed by Photoluminescence Spectroscopy of Single CsPbBr₃ Perovskite Nanocrystals”
Institute for Chemical Research, Kyoto University
1 December 2023

KANEMITSU, Yoshihiko

The 17th JSAP Fellow (2023)
“Pioneering Research on Nano-Semiconductor Photophysics and Photonics”
The Japan Society Applied Physics
19 September 2023

YUMOTO, Go

Paper Presentation Encouragement Award
The 43rd Annual Meeting of The Laser Society of Japan
“Development of Polarization-Resolved Pump-Probe Microscopy and Observation of Ultrafast Two-Dimensional Exciton Spin Transport”
The Laser Society of Japan
31 May 2023

ZHANG, Zhenya

ICR Award for Graduate Students
“Generation of Third-Harmonic Spin Oscillation from Strong Spin Precession Induced by Terahertz Magnetic near Fields”
Institute for Chemical Research, Kyoto University
1 December 2023

SEKIGUCHI, Fumiya

Excellent Paper Presentation Award
The 43rd Annual Meeting of the Laser Society of Japan
“Polarization Anomaly of High Harmonics Generated from a Solid Reflecting the Crystal Symmetry and Non-Perturbative Nonlinear Dynamics”
The Laser Society of Japan
31 May 2023

SAKAMOTO, Minoru

Student Presentation Award of the Physical Society of Japan (Division 5)
2023 Spring Meeting of the Physical Society of Japan
“Controlling High Harmonic Generation in GaAs by Excitation Polarization: Enhancement of Harmonic Yields and Emergence of Nonlinear Optical Activity”
The Physical Society of Japan
31 March 2023

KANEMITSU, Yoshihiko

Paper Presentation Encouragement Award
The 43rd Annual Meeting of The Laser Society of Japan
“Development of Polarization-Resolved Pump-Probe Microscopy and Observation of Ultrafast Two-Dimensional Exciton Spin Transport”
The Laser Society of Japan
31 May 2023
DAIKOKU, Yusuke

Student Presentation Award of the Physical Society of Japan (Division 5)
2023 Annual Meeting of the Physical Society of Japan
“Light-Induced Phase Separation in ABX₃-Type Perovskite Semiconductors Studied by Hyperspectral Imaging”
The Physical Society of Japan
14 October 2023

MENG, Lingjie

ICR Award for Young Scientists
“Mirusviruses Link Herpesviruses to Giant Viruses”
Institute for Chemical Research, Kyoto University
1 December 2023

ENDO, Hisashi

Oceanography Encouragement Prize
“Study on Marine Biogeochemical Cycles Using the Molecular Biological Techniques”
RIOC, Research Institute for Oceanography Foundation
22 April 2023
Poster Awards

WANG, Yutang

Best Poster Award
The 57th Meeting for Young Scientists on Organic Reactions
“Development of a New Germanium Atom Transfer Reagent”
Organizing Committee of the 57th Meeting for Young Scientists on Organic Reactions
12 August 2023

TAMAMOTO, Ken

Excellent Presentation Award
The 31st Polymer Materials Forum
“Visualization and Understanding of Dynamic Wetting and Fluid Behavior at the Polymer Brush Interface”
The Society of Polymer Science, Japan
25 May 2023

IPC2023 Poster Award: Langmuir Award
The 13rd SPSJ International Polymer Conference (IPC2023)
“Hydration and Anti-Icing Properties of Hydrophilic Concentrated Polymer Brushes”
The Society of Polymer Science, Japan
21 July 2023

HU, Weizhe

Poster Award
The 33rd Symposium on Physical Organic Chemistry
The Society of Physical Organic Chemistry, Japan
14 September 2023

JIAHG, Yuhan

BCSJ Award for Poster Presentation
The 10th Pacific Symposium on Radical Chemistry (PSRC-10)
“Synthesis of Topological Block Polymers by Organotellurium-Mediated Emulsion Polymerization in Water”
Organization Committee of the 10th Pacific Symposium on Radical Chemistry (PSRC-10)
9 June 2023

KAWASE, Riku

Poster Presentation Awards for Young Researchers
“Control of Impurity Incorporation into CVD Diamond toward Long Coherence Time of the NV Center by Optimizing Pressure”
Quantum Innovation 2023
5 December 2023
KURIYAMA, Masashi

Excellent Poster Award
Interactive Seminar on Novel Medicinal Chemistry for Young Researchers (So-Yaku Konwa Kai)
“Identification of Biomolecules Involved in Intracellular Delivery of Biopolymers”
Division of Medicinal Chemistry, The Pharmaceutical Society of Japan
20 June 2023

TOH, Kohei

Best Presentation Award
Drug Discovery Conference 2023 Yugawara
“Chemoproteomic Identification of Blue-Light-Damaged Proteins”
Division of Medicinal Chemistry, The Pharmaceutical Society of Japan
20 June 2023

FARRAG, Asmaa Mostafa Abdelbari Soliman

Excellent Poster Prize
The 13th iCeMS Retreat
“Real-Time Monitoring of Biomolecular Condensates’ States”
WPI-iCeMS, Kyoto University
29 September 2023

SATO, Hiroki

Poster Prize
The 2nd International Research Center Seminar on Nanocarbon
“Molecular-Level Analysis of Charge Traps in An Organic Amorphous Film by Multiscale Simulation”
The Royal Society of Chemistry
6 October 2023

ARAKI, Taisuke

Excellent Poster Award
The 46th Fluorine Conference of Japan
“Understanding of Physical Properties of Perfluoroalkanes by Infrared Spectroscopy Using Recrystallized Compounds”
The Society of Fluorine Chemistry, Japan
25 October 2023
SUGIMOTO, Emi

Student Poster Award
The 52nd Japan Conference on Crystal Growth
“Control of Crystal Orientation of Organic Semiconductors with Alkyl Side Chains by Low-Temperature Deposition”
The Japanese Association for Crystal Growth
25 December 2023

HIRA, Shota

Poster Award
The 33rd Symposium on Physical Organic Chemistry
“Hole-Collecting Monolayer Materials based on Squaraine Structures for Perovskite Solar Cells”
The Society of Physical Organic Chemistry, Japan
14 September 2023

HASEGAWA, Akio

Poster Award
The 50th Symposium on Main Group Element Chemistry
“Synthesis of Metal Halides Derivatives bearing Triptycyl Groups”
The Chemical Society of Japan (CSJ)
9 December 2023

IWASHIMIZU, Chisaki

Best Poster Award
Microscopy Conference 2023
“Different Image Contrasts between Atomic Resolution HAADF and EELS Mapping in Rutile TiO2”
German Society for Electron Microscopy
2 March 2023

HARATA, Fuyuki

Poster Prize
The 5th Frontier Solar Cell Seminar
“Development of Fabrication Method for Large-Area Tin-Perovskite Thin Film”
The Executive Committee of the Frontier Solar Cell Seminar
15 December 2023

MATSUOKA, Yuto

Best Poster Presentation Award in 69th Symposium on Organometallic Chemistry
The 69th Symposium on Organometallic Chemistry, Japan
“Difference in N2-Reducing Activity by [Mo3S4M] (M = Fe, Co, Ni) Cubes”
Division of Organometallic Chemistry, The Kinki Chemical Society
27 September 2023
DIVISION OF SYNTHETIC CHEMISTRY
— Organoelement Chemistry —

[Others]

— Structural Organic Chemistry —

—— Advanced Inorganic Synthesis ——

—— Synthetic Organic Chemistry ——

—— Chemistry of Polymer Materials ——

— Polymer Controlled Synthesis —

[Others]

— Inorganic Photonics Materials —

— Nanospintronic —

DIVISION OF BIOCHEMISTRY

Biofunctional Design-Chemistry

Molecular Biology

Chemical Biology

DIVISION OF ENVIROMENTAL CHEMISTRY — Molecular Materials Chemistry

— Hydroscopic Environment Analytical Chemistry —

— Chemistry for Functionalized Surfaces —

[Others]

— Molecular Microbial Science —

DIVISION OF MULTIDISCIPLINARY CHEMISTRY

— Polymer Materials Science —

— Molecular Rheology —

— Molecular Aggregates —

ADVANCED RESEARCH CENTER FOR BEAM SCIENCE — Particle Beam Science —

— Laser Matter Interaction Science —

INTERNATIONAL RESEARCH CENTER FOR ELEMENTS SCIENCE
— Synthetic Organotransformation —

— Advanced Solid State Chemistry —

Organometallic Chemistry

[Tanifuji, K.; Ohki, Y., Studies on Biosynthesis and Catalysis of Metal-Sulfur Clusters, Bulletin of Japan Society of Coordination Chemistry, 81, 58-65 (2023).]

Tanifuji, K.; Ohki, Y., Reduction of Nitrogen by Synthetic Metal Complexes Mimicking the Active Site of Nitrogenase, BIOSCIENCE & INDUSTRY, 81(1), 40-42 (2023).

Nanophotonics

BIOPHARMACEUTICALS CENTER — Chemical Life Science —

Mathematical Bioinformatics

[Others]

— Bio-knowledge Engineering —

HAKUBI PROJECT

— Optoelectronic Energy Recycling and Quantum Cooperative Effects in Semiconductor Nanostructures —

INTERNATIONAL RESEARCH COLLABORATIONS

[Australia]
Monash University, Monash Biomedicine Discovery Institute

[Austria]
Vienna University of Technology, Photonics Institute

[China, P.R.]
Chinese Academy of Science, Changchun Institute of Applied Chemistry
Fudan University, School of Computer Science
Fudan University, School of Pharmacy
Peking University, Peking-Tsinghua Center for Life Sciences, College of Life Sciences
ShanghaiTech University, School of Information Science and Technology
South China University of Technology, School of Computer Science and Engineering
The University of Hong Kong, Department of Mathematics
Tsinghua University, Department of Chemistry

[Croatia]
Ruder Bošković Institute, Division of Organic Chemistry and Biochemistry

[Czech Republic]
The Czech Academy of Sciences, Institute of Hydrobiology

[Finland]
Aalto University, Department of Computer Science

[France]
Centre National de la Recherche Scientifique
French Alternative Energies and Atomic Energy Commission (CEA), Laboratoire de Physiologie Cellulaire & Végétale

[Germany]
European Molecular Biology Laboratory
Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Chemie und Computerchemie
Karlsruhe Institute of Technology, Institute of Organic Chemistry
Technische Universität Dresden, Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)

[India]
Birbal Sahni Institute of Palaeosciences
CSIR-National Institute for Interdisciplinary Sciences and Technology, Chemical Science and Technology Division
Indian Institute of Technology, Bombay, Department of Metallurgical Engineering & Materials Science Including Corrosion Science & Engineering

[Israel]
Ben-Gurion University of the Negev, Department of Computer Science

[Italy]
University of Naples “Federico II”, Department of Chemical Sciences

[Norway]
University of Bergen, Department of Biology

[Romania]
Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH)
National Institute for Laser, Plasma and Radiation Physics

[Sri Lanka]
University of Colombo, Department of Chemistry

[Taiwan]
National Yang Ming Chiao Tung University, Institute of Bioinformatics and Systems Biology

[Thailand]
Chiang Mai University, Center of Excellence in Materials Science and Technology
Chiang Mai University, Faculty of Science
Maejo University, School of Renewable Energy
Mahidol University, Faculty of Science
Naresuan University, Faculty of Science
Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation
Thailand National Metal and Materials Technology Center, Powder Metallurgy Research and Development Unit
[the U.K.]
Durham University, OEM Research Group, Department of Physics

University of St. Andrews, EaStCHEM School of Chemistry

University of St. Andrews, Organic Semiconductor Centre, EaStCHEM School of Chemistry

[the U.S.]
Stony Brook University, Department of Materials Science and Chemical Engineering

The Ohio State University, Department of Microbiology & Department of Civil, Environmental, and Geodetic Engineering

University of South Florida, College of Marine Science

University of Michigan, Department of Chemical Engineering

University of California San Diego, Scripps Institution of Oceanography

The list shows the institutions with which papers are co-authored.
DIVISION OF SYNTHETIC CHEMISTRY
— Organoelement Chemistry —

TOKITOH, Norihiro
New Main Group Element Chemistry and Materials Science Based on Heavy Aryl Anions
Grant-in-Aid for Scientific Research (S)
26 June 2019–31 March 2024

YAMADA, Hiroko
Development Organic Donor-Acceptor Materials for the Control of Dynamic Exciton
Grant-in-Aid for Transformative Research Areas (A)
19 November 2020–31 March 2025

YAMADA, Hiroko
Development of Pi-Expanded Aromatic Compounds Based on Precursor Approach
Grant-in-Aid for Scientific Research (A)
1 April 2020–31 March 2023

MATSUO, Kyohei
Development of n-Type Organic Semiconductors Using Main Group Element Complexes of Tetrabenzo-porphyrins
Grant-in-Aid for Scientific Research (C)
1 April 2022–31 March 2025

YAMAUCHI, Mitsuaki
Control of Helical Arrangement of Quantum Dots Using Supramolecular Templates and the Realization of Circular Polarized Emission
Grant-in-Aid for Early-Career Scientists
1 April 2022–31 March 2025

YUKIMOTO, Mariko
Creation of Tautomerizable Heavy Amides Compounds
Grant-in-Aid for Early-Career Scientists
1 April 2022–31 March 2024

MURATA, Yasujiro
Synthesis and Photophysical Properties of Novel Chiral Nanocarbons
Grant-in-Aid for Challenging Research (Exploratory)
30 June 2023–31 March 2025

HIROSE, Takashi
Investigation on Chiral Molecular Wire Properties Based on pi-Extended Helical Molecules
Grant-in-Aid for Scientific Research (B)
1 April 2023–31 March 2026

HIROSE, Takashi
Creation of Chiral Molecular Functions Based on Precise Arrangement of Helical pi-Conjugated Molecules
PRESTO, (Precursory Research for Embryonic Science and Technology), JST
1 December 2020–31 March 2024

HASHIKAWA, Yoshifumi
Creation of Experimental Hydration Models Based on Spherical pi-Systems
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a Proposed Research Area)
1 April 2022–31 March 2024

— Synthetic Organic Chemistry —

OHMIYA, Hirohisa
Flexible Conversion of Complex and Bulky Molecules Using Light Energy
Grant-in-Aid for Transformative Research Areas (A)
1 April 2023–31 March 2026

OHMIYA, Hirohisa
Catalytic Generation of Sulfur Cation Radical Species by Dynamic Exciton and its Application to Bond Formation Reactions
Grant-in-Aid for Transformative Research Areas (A)
10 September 2021–31 March 2023

NAGAO, Kazunori
Catalytic Generation of Carbocation without Acids and the Application to Bond Formation Reactions
Grant-in-Aid for Early-Career Scientists
1 April 2021–31 March 2024

MURATA, Yasujiro
Synthesis and Photophysical Properties of Novel Chiral Nanocarbons
Grant-in-Aid for Challenging Research (Exploratory)
30 June 2023–31 March 2025

HIROSE, Takashi
Investigation on Chiral Molecular Wire Properties Based on pi-Extended Helical Molecules
Grant-in-Aid for Scientific Research (B)
1 April 2023–31 March 2026

HIROSE, Takashi
Creation of Chiral Molecular Functions Based on Precise Arrangement of Helical pi-Conjugated Molecules
PRESTO, (Precursory Research for Embryonic Science and Technology), JST
1 December 2020–31 March 2024

HASHIKAWA, Yoshifumi
Creation of Experimental Hydration Models Based on Spherical pi-Systems
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a Proposed Research Area)
1 April 2022–31 March 2024

— Structural Organic Chemistry —

MURATA, Yasujiro
Developments of Nanoscale Laboratory by Sophisticated Chemical Transformation of Fullerenes
Grant-in-Aid for Scientific Research (B)
1 April 2023–31 March 2026

Abbreviations and Acronyms

AMED : Japan Agency for Medical Reserach and Development
JSPS : Japan Society for the Promotion of Science
JST : Japan Science and Technology Agency
MEXT : Ministry of Education, Culture, Sports, Science and Technology
NEDO : New Energy and Industrial Technology Development Organization
METI : Ministry of Economy, Trade and Industry
— Advanced Inorganic Synthesis —

TERANISHI, Toshiharu
Nanoscale Element Replacement Science: Structural Transformation of Nanocrystalline Phases and Development of Novel Functions
Grant-in-Aid for Scientific Research (S)
26 June 2019–31 March 2024

TERANISHI, Toshiharu
Synthesis of Unprecedented Ordered Alloy Nanoparticles and Development of Their Structure-Specific Properties
Grant-in-Aid for Challenging Research (Exploratory)
28 June 2019–31 March 2023

TERANISHI, Toshiharu
Creation of Unprecedented Nanomaterials by Precious Arrangement of Atomic Layers and Crystal Phase
CREST (Core Research for Evolutional Science and Technology), JST
1 November 2021–31 March 2027

TERANISHI, Toshiharu
Fabrication of Unprecedented Alloy Cathode Catalysts
Development of Technologies for Realizing a Hydrogen Society, NEDO
31 July 2020–31 March 2025

TAKAHATA, Ryo
Modeling of Defects and Exploration of Novel Materials by Using Cadmium Chalcogenide Clusters with Definite Structures
Grant-in-Aid for Early-Career Scientists
1 April 2021–31 March 2024

TAKAHATA, Ryo
Development of Precise Control Methods for Nanomaterials with Multi-Functions
Uncharted Territory Challenge 2050, NEDO
1 November 2021–30 September 2026

TAKEKUMA, Haruka
Controlling Plasmonic Properties of Novel Ordered Alloy Nanoparticles
Grant-in-Aid for Early-Career Scientists
1 April 2023–31 March 2026

TAKEKUMA, Haruka
Creation of Platinum-Based Bimetallic Nanoparticles
IRCCS Young Scientists Co-Creation Proposal Research Fund
1 April 2022–31 March 2023

SARUYAMA, Masaki
Chemical Synthesis and Exploration of Concerted Optical Properties of Anisotropic Three-Dimensional Quantum Dot Superlattices
Grant-in-Aid for Scientific Research (B)
1 April 2023–31 March 2027

SARUYAMA, Masaki
Synthesis and Function of Diverse Three-Dimensional Inorganic Nanoparticle Superstructures
Grant-in-Aid for Challenging Research (Exploratory)
30 July 2020–31 March 2023

SARUYAMA, Masaki
Creation of Structure-Specific Reaction Fields through Self-Assembly of Nanocrystals
FOREST (Fusion Oriented Research for Disruptive Science and Technology), JST
1 April 2022–31 March 2025

SATO, Ryota
Principle Study of Plasmonic Ordered Nanoalloys
Grant-in-Aid for Scientific Research (B)
1 April 2023–31 March 2027

MATSUMOTO, Kenshi
Inter-Element Miscibility Driven Rearrangement from Disordered to Long-Range Ordered Alloy Structures
Grant-in-Aid for Early-Career Scientists
1 April 2022–31 March 2025

DIVISION OF MATERIALS CHEMISTRY — Chemistry of Polymer Materials —

TSUJII, Yoshinobu
Development of Next-Generation Monolithic Membrane Columns to Reduce Biopharmaceutical Purification Costs
Go-Tech Project, The Small and Medium Enterprise Agency, METI
1 August 2023–1 May 2025

TSUJII, Yoshinobu
Development of High-Performance Sliding Parts by Imparting Concentrated Polymer Brushes (CPB) and Their Application to Equipment
A-STEP (Adaptable and Seamless Technology Transfer Program through Target-driven R&D), JST
1 December 2020–31 March 2023

TSUJII, Yoshinobu
Hierarchical Understanding and Control of Wear Phenomena on Ultra-Low Friction Polymer Brushes
CREST (Core Research for Evolutional Science and Technology), JST
1 October 2021–31 March 2027

TSUJII, Yoshinobu
Development of Next-Generation Ship-Bottom Coating Films and Coating Processes for Energy Saving and Reduced Environmental Impact
Environment Research and Technology Development Fund, ERCA (Environmental Restoration and Conservation Agency)
1 April 2022–31 March 2024

KINOSE, Yuji
Synthesis of Asymmetric Polymer-Brush-Modified Nanorods and Formation of Their Ordered Structures
Grant-in-Aid for Early-Career Scientists
1 April 2023–31 March 2026

ISHIDA, Koichiro
Construction of Polysaccharide-Nanofiber Monolayers by Interfacial Architectonics and Creation of Novel Scaffold Functions
Grant-in-Aid for JSPS Research Fellow
8 April 2022–31 March 2024

— Polymer Controlled Synthesis —

YAMAGO, Shigeru
Development of New Fabrication Methods of Polymer Materials Based on the Structurally Controlled Hyperbranched Polymers
Grant-in-Aid for Scientific Research (S)
5 July 2021–31 March 2026
YAMAGO, Shigeru
International Research Center for Basic Organic Device Chemistry by True Integration of Synthesis and Device
Core-to-Core Program, JSPS
1 April 2022–31 March 2026

TOSAKA, Masatoshi
Aggregation Structure of Hyper-branched Block Copolymers in Solution
Grant-in-Aid for Scientific Research (C)
1 April 2021–31 March 2024

KAYAHARA, Eiichi
Creation of New Cyclic π-Conjugated Molecules for Realization of High Density Conjugation
Grant-in-Aid for Transformative Research Areas (A)
10 September 2021–31 March 2023

KAYAHARA, Eiichi
Pioneering Chemistry of Totally Conjugated Cyclic Polymers
FOREST (Fusion Oriented Research for Disruptive Science and Technology), JST
1 April 2022–31 March 2025

MIZUOCHI, Norikazu
Research of Quantum Sensing by Advanced Control of the Quantum State of NV Center in Diamond
Grant-in-Aid for Scientific Research (A)
5 April 2021–31 March 2024

MIZUOCHI, Norikazu
Development of Innovative Sensor Systems by Highly Sophisticated Control of Solid Quantum Sensors
Q-LEAP (Quantum Leap Flagship Program), MEXT
1 November 2018–31 March 2028

MIZUOCHI, Norikazu
Innovations Medicine and Life Sciences through the Application of Quantum Technology
Q-LEAP (Quantum Leap Flagship Program), MEXT
1 April 2020–31 March 2030

MIZUOCHI, Norikazu
Highly Sensitive Quantum Sensing Microscope Development Research for Elucidating Biological Phenomena
CREST (Core Research for Evolutional Science and Technology), JST
1 October 2023–31 March 2029

MIZUOCHI, Norikazu
Development of an Ultra-Sensitive Quantum Magnetic Sensing System That Enables High Sensitivity NMR without the Need for Cooling
A-STEP (Adaptable and Seamless Technology Transfer Program through Target-driven R&D), JST
1 October 2023–31 March 2027

MORIOKA, Naoya
Exploring Control of Localized Spins Based on Electrical Spin Injection in Silicon Carbide
Grant-in-Aid for Research Activity Start-up
30 August 2021–31 March 2023

HERBSCHLEB, Ernst David
Enhanced Quantum Sensing with a Nitrogen-Vacancy Centre as Gateway to the Electron Spin of Phosphorus
Grant-in-Aid for Early-Career Scientists
1 April 2022–31 March 2024

NISHIKAWA, Tetsuri
Investigation of Carrier Transport Mechanism for Photocurrent-Detected Magnetic Resonance on Color-Center Spins in Silicon Carbide
Grant-in-Aid for Research Activity Start-up
31 August 2023–31 March 2025

— Nanospintronics —

ONO, Tenuo
Ferrimagnetic Spintronics and Device Application
Grant-in-Aid for Scientific Research (S)
31 August 2020–31 March 2025

ONO, Tenuo
Unraveling the Mechanism of Superconductive Diode Effect and Creating Non-Volatile Superconductive Diode
Grant-in-Aid for Challenging Research (Pioneering)
9 July 2021–31 March 2024

ONO, Tenuo
Development of 3D Magnetic Memory
CREST (Core Research for Evolutionary Science and Technology), JST
1 October 2021–31 March 2025

SHIOTA, Yoichi
Polarization Control of Spin Wave Spin Current and Its Device Application
Grant-in-Aid for Scientific Research (B)
1 April 2022–31 March 2025

HISATOMI, Ryusuke
Creation of Highly Efficient Optical Photon-Microwave Conversion Using Disk-Shaped Ferromagnetic Thin Films
Grant-in-Aid for Early-Career Scientists
1 April 2022–31 March 2024

HISATOMI, Ryusuke
Opto-Spin-Mechanics Using Surface Acoustic Waves
PRESTO (Precursory Research for Embryonic Science and Technology), JST
1 November 2020–31 March 2024

KARUBE, Shutaro
Development of Novel Spin Current Control Technology Based on Exchange Interaction
Grant-in-Aid for Early-Career Scientists
1 April 2022–31 March 2025

KARUBE, Shutaro
Creation of Innovative Information Carrier Devices by Multifunctional Spin Oxides
PRESTO (Precursory Research for Embryonic Science and Technology), JST
1 October 2022–31 March 2025
NARITA, Hideki
Control of Superconductivity by Noncollinear Magnetism
Grant-in-Aid for Early-Career Scientists
1 April 2021–31 March 2024

NARITA, Hideki
Creation of Innovative Quantum Control Technology Using Hybrid Superconductors
PRESTO (Precursory Research for Embryonic Science and Technology), JST
1 October 2023–31 March 2025

DIVISION OF BIOCHEMISTRY
— Biofunctional Design-Chemistry —

FUTAKI, Shiroh
Intracellular Fate of Extracellular Fine Particles and the Control System
CREST (Core Research for Evolutionary Science and Technology), JST
1 October 2018–1 March 2024

IMANISHI, Miki
Biological Function of Non-Canonical Nucleic Acids
Grant-in-Aid for Transformative Research Areas (B)
23 August 2021–31 March 2024

KAWAGUCHI, Yoshimasa
Intracellular Delivery and Phase Separation Control of Antibodies Based on Coaxial Strategic Basic Research Programs ACT-X, JST
1 April 2022–31 March 2025

HIROSE, Hisaaki
Search for Peptides that Promote Internalization and Endoplasmic Release of Extracellular Vesicles
Grant-in-Aid for Scientific Research (C)
1 April 2022–31 March 2025

— Chemistry of Molecular Biocatalysts —

MASHIGUCHI, Kiyoshi
Investigation of the Cytochrome P450 Enzyme Family Involved in the Biosynthesis of Non-Canonical Strigolactones
Grant-in-Aid for Scientific Research (B)
1 April 2019–31 March 2023

MASHIGUCHI, Kiyoshi
Investigation of the Physiological Significance of the Structural Diversity of Strigolactones
Grant-in-Aid for Scientific Research (B)
1 April 2023–31 March 2028

— Molecular Biology —

AOYAMA, Takashi
Roles of Phosphoinositid Signaling in Plant Cell Morphogenesis
Grant-in-Aid for Scientific Research (B)
1 April 2021–31 March 2024

TSUGE, Tomohiko
Molecular Mechanism Governing Plant Plasticity through PremRNA 3'UTR Regulation
Grant-in-Aid for Scientific Research (C)
1 April 2022–31 March 2025

KATO, Mariko
Study on the Involvement of Phosphoinositides in Pollen Germination
Grant-in-Aid for Scientific Research (C)
1 April 2021–31 March 2025

— Chemical Biology —

UESUGI, Motonari
Development of Artificial Chaperones
Grant-in-Aid for Transformative Research Areas (A)
16 June 2022–31 March 2024

UESUGI, Motonari
Chemical Biology of Cellular Self-Assemblies
Grant-in-Aid for Scientific Research (A)
1 April 2022–31 March 2025

UESUGI, Motonari
Designer Melanin for Analyzing and Controlling Cells
Grant-in-Aid for Challenging Research (Exploratory)
9 July 2021–31 March 2023

UESUGI, Motonari
Intracellular Analysis of LLPS Status
Grant-in-Aid for Challenging Research (Exploratory)
30 June 2023–31 March 2025

UESUGI, Motonari
Asian Chemical Biology Initiative Core-to-Core Program, JSPS
1 April 2022–31 March 2025

UESUGI, Motonari
PD-1 Blockade Cancer Immunotherapy Combined with Small Molecule Activators of T Cell Fatty Acid Oxidation
P-PROMOTE (Project for Promotion of Cancer Research and Therapeutic Evolution), AMED
20 May 2022–31 March 2024

UESUGI, Motonari
Grand Design Platform and Database for the Development of Innovative Adjuvant and Vaccine Carrier Program on R&D of New Generation Vaccine Including New Modality Application, AMED
1 July 2022–31 March 2027

SATO, Shinichi
Understanding Cellular Function with Short RNAs and Small Molecules
Grant-in-Aid for Scientific Research (B)
1 April 2020–31 March 2023

SATO, Shinichi
New Technologies for RNA Structural Regulation that Enables the Control and Analysis of Cellular Function
Grant-in-Aid for Scientific Research (B)
1 April 2023–31 March 2026

SATO, Shinichi
A New Oligonucleotide Therapeutics that Induces a Cooperative RNA G-Quadruplex Formation for Gene Silencing
Grant-in-Aid for Challenging Research (Pioneering)
9 July 2021–31 March 2025
PERRON, Amelie
Live and Let Die: Orchestrating Aggregation of Eye Pigments with Organic Molecules
Grant-in-Aid for Scientific Research (C)
1 April 2023–31 March 2026

ABO, Masahiro
Development of Self-Assembling Chemicals which Have Chaperone Activity in Live Cells
Grant-in-Aid for Scientific Research (C)
1 April 2021–31 March 2024

TAKEMOTO, Yasushi
Exploration of Radical-Sensitive Signal Peptide
Grant-in-Aid for Scientific Research (C)
1 April 2022–31 March 2025

TAKEMOTO, Yasushi
Understanding and Application of Radical-Sensitive Peptide
Takeda Science Foundation
1 September 2021–31 May 2024

THAKEMOTO, Misao
Mechanistic Analysis for the Immune Activation of T Cells by Covalent Natural Compounds
Grant-in-Aid for Scientific Research (C)
1 April 2022–31 March 2025

DIVISION OF ENVIRONMENTAL CHEMISTRY
— Molecular Materials Chemistry —

KAJI, Hironori
Material Design Based on Dynamic Excitation and their Applications
Grant-in-Aid for Transformative Research Areas (A)
19 November 2020–31 March 2025

SHIZU, Katsuyuki
A Unified Theory of Electronic Transition Rate Constants for High Throughput Materials Screening
Grant-in-Aid for Scientific Research (C)
1 April 2022–31 March 2025

SUZUKI, Katsuaki
Spatial-temporal Analysis of Dynamic Exciton by Solid-State NMR
Grant-in-Aid for Transformative Research Areas (A)
19 November 2020–31 March 2025

TANAKA, Hiroyuki
Development of Multiple-Resonance Thermally Activated Delayed Fluorescent Molecules with Excellent Circularly Polarized Luminescence Property
Grant-in-Aid for Challenging Research (Exploratory)
1 July 2023–31 March 2025

— Hydrospheric Environment Analytical Chemistry —

SOHRIN, Yoshiki
Ocean Section Diagnosis on the Basis of Stoichiometry and Stable Isotope Ratios of Trace Metals
Grant-in-Aid for Scientific Research (A)
1 April 2019–31 March 2023

TAKANO, Shotaro
Isotopic Analysis for Estimating the Sources of Particulate Trace Metals in the Ocean
Grant-in-Aid for Early-Career Scientists
1 April 2020–31 March 2023

ZHENG, Linjie
Speciation and Sectional Distribution of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in the South Pacific and Indian Oceans
Grant-in-Aid for Early-Career Scientists
1 April 2021–31 March 2024

— Chemistry for Functionalized Surfaces —

HASEGAWA, Takeshi
Evolution of Near-Infrared Spectroscopy for Materials Structure Analysis: Development of NIR-MAIRS
Grant-in-Aid for Scientific Research (B)
1 April 2022–31 March 2026

HASEGAWA, Takeshi
Innovation in Control of Physical Properties of Polymer Thin-Film Materials by Micro-Morphology Analysis of Amorphous
Grant-in-Aid for Challenging Research (Exploratory)
9 July 2021–31 March 2024

MORI, Taizo
Dynamic Response of Molecular Machines at the Air-Water Interface Using Second Harmonic Generation
Grant-in-Aid for Scientific Research (C)
1 April 2023–31 March 2028

SHIOYA, Nobutaka
Visualization of Monolayer Structures Specifically Formed by Functional Organic Materials at the Substrate Interface
Grant-in-Aid for Early-Career Scientists
1 April 2022–31 March 2025

— Molecular Microbial Science —

KURIHARA, Tatsuo
Molecular Basis for Generation of the Diversity of Bacterial Membrane Phospholipid Acyl Chains and Mechanisms Underlying Their Physiological Functions
Grant-in-Aid for Scientific Research (B)
1 April 2021–31 March 2024

KURIHARA, Tatsuo
Dissection of the Molecular Basis of Membrane Vesicle Biogenesis and Construction of an Extracellular Platform for Substance Production by Using a Hyper-Vesiculating Bacterium
Grant-in-Aid for Challenging Research (Pioneering)
30 July 2020–31 March 2023

KURIHARA, Tatsuo
Enzymatic Manipulation of Biomembrane Lipids to Enhance Cellular Function
Grant-in-Aid for Challenging Research (Exploratory)
30 June 2023–31 March 2025

KAWAMOTO, Jun
Elucidation of Molecular Mechanism of Extracellular Membrane Vesicle Production by Bacteria and Its Application
Grant-in-Aid for Scientific Research (B)
1 April 2023–31 March 2026

KAWAMOTO, Jun
A Novel Platform for Functional Nanoparticle -the Synthesis Mechanism of Unique Outer-Membrane Vesicles of Bacteria and Its Application-
Grant-in-Aid for Scientific Research (C)
1 April 2020–31 March 2023
KAWAMOTO, Jun
Exploration and Application of Outer Membrane Vesicle-Producing Bacteria as a Foundation for New Nano-Material Development Fund for the Promotion of Joint International Research (International Collaborative Research)
8 September 2023–31 March 2027

OGAWA, Takuya
Study on the Metabolic Conversion of Omega-3 Polyunsaturated Fatty Acids through a Reconsideration of Beta-Oxidation Pathway
Grant-in-Aid for Scientific Research (C)
1 April 2021–31 March 2024

DIVISION OF MULTIDISCIPLINARY CHEMISTRY
— Polymer Materials Science —

TAKENAKA, Mikihito
4D Analysis of Grazing Incidence Scattering to Reveal Adhesion Processes at the Adhesive Interface
Mirai Program, JST
1 November 2018–31 March 2028

OGAWA, Hiroki
Non-Equilibrium MI Scheme Shortens Future Material Development Feasibility Study Program, NEDO
10 May 2023–31 March 2025

OGAWA, Hiroki
Development of a Recycled Plastics Databank to Improve the Circularity SIP, ERCA (Environmental Restoration and Conservation Agency)
1 October 2023–31 March 2028

— Molecular Rheology —

MATSUMIYA, Yumi
Molecular Dynamics of Associative Polymers and Its Experimental Validation: Effect of Dissociation Equilibrium on Entanglement Relaxation Modes
Grant-in-Aid for Scientific Research (B)
1 April 2021–31 March 2024

SATO, Takeshi
Development of Coarse-Grained Molecular Model for Predicting Dynamics of Entangled Associating Polymers
Grant-in-Aid for Early-Career Scientists
1 April 2021–31 March 2024

SATO, Takeshi
A New Fluid Science for Non-Newtonian/Non-Uniform/Non-Equilibrium Flows
PRESTO (Precursory Research for Embryonic Science and Technology), JST
1 October 2022–31 March 2026

— Molecular Aggregates —

WAKAMIYA, Atsushi
Fundamental Chemical Research for Efficient Lead Free Perovskite Solar Cells
Grant-in-Aid for Scientific Research (A)
5 April 2021–31 March 2024

WAKAMIYA, Atsushi
Pb-Free Perovskite Solar Cells Consisting of Sn Mirai Full-scale R&D Project, JST
1 April 2022–31 March 2027

WAKAMIYA, Atsushi
Development of Practical Technology for Perovskite Solar Module with High Installation Flexibility Green Innovation Fund Projects, NEDO
27 December 2021–31 March 2026

WAKAMIYA, Atsushi
Development of Film-Type Perovskite Solar Module with High Degree of Freedom Design Development of Technologies to Promote Photovoltaic Power Generation as a Primary Power Source, NEDO
13 July 2020–31 March 2025

MURDEY, Richard
Ageing and Passivation Effects in Perovskite Solar Cells
Grant-in-Aid for Scientific Research (C)
1 April 2019–31 March 2023

NAKAMURA, Tomoya
Two-Dimensionally Expanded pi-Systems for High-Performance Tin Perovskite Solar Cells
Grant-in-Aid for Early-Career Scientists
1 April 2021–31 March 2023

TRUONG, Minh Anh
Development of Multipodal Hole-Transporting Monolayer Materials for High Performance Perovskite Solar Cells
Grant-in-Aid for Early-Career Scientists
1 April 2022–31 March 2024

ADVANCED RESEARCH CENTER FOR BEAM SCIENCE
— Particle Beam Science —

WAKASUGI, Masanori
Precise Measurement of Charge Density Distribution of Sn Unstable Isotopes by Advanced Innovative SCRIT Electron Scattering
Grant-in-Aid for Scientific Research (S)
12 April 2023–31 March 2028

WAKASUGI, Masanori
Development of Stationary Target for Unstable Nuclei for Application to Research of Nuclear Reaction
Grant-in-Aid for Challenging Research (Pioneering)
30 July 2020–31 March 2023

WAKASUGI, Masanori
Development of RFQ-Type Isobar Filters Leading Innovative Research on Unstable Nuclear Reactions
Grant-in-Aid for Challenging Research (Pioneering)
30 June 2023–31 March 2026

TSUKADA, Kyo
Isotope Dependences of Nuclear Charge Distributions and Neutron Radius by Electron Scattering
Grant-in-Aid for Scientific Research (A)
1 April 2020–31 March 2025

OGAWARA, Ryo
Development of Internal Active Target for Beam Recycle Techniques
Grant-in-Aid for Early-Career Scientists
1 April 2022–31 March 2024
OGAWARA, Ryo
Development of Beam Recycle Techniques for Advanced Research on Nuclear Reactions with Rare RI
FOREST (Fusion Oriented Research for Disruptive Science and Technology), JST
1 April 2023–31 March 2030

TONGU, Hiromu
Mapping System Using High-Speed Scanning in Cryogenic Environment for Superconductor State Inspection
Grant-in-Aid for Scientific Research (C)
1 April 2022–31 March 2025

— Laser Matter Interaction Science —

TOKITA, Shigeiki
Development of Mid-Infrared High-Power Ultrashort Pulse Lasers and Its Application to Soft-Matter Micro-Processing
Grant-in-Aid for Scientific Research (B)
1 April 2021–31 March 2024

TOKITA, Shigeiki
The Power Laser DX Platform
Project for Promoting Public Utilization of Advanced Research, MEXT
1 April 2021–31 March 2026

TOKITA, Shigeiki
Formation of Ultrashort Femtosecond Pulses in the Mid-Infrared Range Based on Iron-Doped Chalcogenides for Problems of Nonlinear Optics of Media with a Reduced Dimension
Bilateral Joint Research Projects, JSPS
1 April 2021–31 March 2023

TOKITA, Shigeiki
Development of an Industrial Femtosecond Laser Intensive Support Program for Young Promising Researchers, NEDO
15 January 2021–31 March 2023

TOKITA, Shigeiki
Pioneering of a High-Intensity Coherent X-Ray Generation Method Using an Ultrahigh-Intensity Mid-Infrared Laser
Matsuo Academic Research Grant, MATSUO Foundation
1 December 2023–31 March 2025

TOKITA, Shigeiki
Development of Compact and Highly Efficient Mid-Infrared Femtosecond Lasers
Research Grant, The Asahi Glass Foundation
1 April 2023–31 March 2025

TOKITA, Shigeiki
Development of High-Intensity Coherent X-Ray Generation Method Supporting Program for Unique Exploratory Investigation Team Studies (SPIRIT2), Kyoto University
1 April 2023–31 March 2025

OKAZAKI, Daiki
Exploring Multispectral Peak Light Source Technology Using High-Intensity Lasers
Grant-in-Aid for Research Activity Start-up
31 August 2023–31 March 2025

OKAZAKI, Daiki
Development of High Power 3 Micron Fiber Lasers Pumped by Laser Diodes
Research Support 2023, Yamada Science Foundation
4 August 2023–31 March 2026

OKAZAKI, Daiki
Research on a Novel Burst Pulse Generation Technique for Efficient Femtosecond Laser Processing
Encouragement Research Grant, The Amada Foundation
1 October 2023–31 March 2026

OKAZAKI, Daiki
Development of Wavelength-Tunable Mid-IR Burst Pulse Lasers
Basic Science Research Projects, The Sumitomo Foundation
7 December 2023–30 November 2026

KANAI, Tsuneto
Development of a Mid-IR Laser Driven X-Ray Spectroscopic System for Zeptosecond Atomic, Molecular, Particle Physics
Grant-in-Aid for Scientific Research (B)
1 April 2023–31 March 2026

KANAI, Tsuneto
Optical Poling-Based Microfabrication of Plastic Materials Using Carrier Wave Envelope Phase Stabilized, Wavelength Tunable Mid-Infrared Femtosecond Lasers
AMADA Research and Development Grant, The AMADA Foundation
1 October 2022–31 March 2026

KANAI, Tsuneto
Development of a Mid-IR Laser-Driven X-Ray Source for Zeptosecond Particle Physics Matsuo Academic Research Grant, MATSUO Foundation
1 December 2022–31 March 2024

KANAI, Tsuneto
Development of High Power Mid-IR Lasers for Zeptosecond Particle Physics
SPIRITS 2022
1 April 2022–31 March 2023

HASHIDA, Masaki
Operando Measurements Using Advanced Beams to Study the Mechanism of Fine Structure Formation
Basic Foundational Research: “Next-Generation Laser” Projects, Q-LEAP (Quantum Leap Flagship Program), MEXT
1 April 2020–31 March 2029

— Electron Microscopy and Crystal Chemistry —

HARUTA, Mitsutaka
Visualization of Electron Orbital Using TEM
Grant-in-Aid for Scientific Research (B)
1 April 2022–31 March 2025
INTERNATIONAL RESEARCH CENTER FOR ELEMENTS SCIENCE
— Synthetic Organotransformation —
NAKAMURA, Masaharu
Iron-Catalyzed Cross Coupling: Quantum Control on Multi-Spin Pathways
Grant-in-Aid for Scientific Research (B)
1 April 2023–31 March 2026

ISOZAKI, Katsuhiro
Triple-Layer Core-Shell Metal Nanocluster Synthesis Driven by Interligand Hydrogen Bonds
Grant-in-Aid for Challenging Research (Exploratory)
30 June 2023–31 March 2025

DOBA, Takahiro
Iron-Catalyzed Carbon–Heteroatom Bond Formation Reactions through pi-Plane Activation
Research Activity Start-up
31 August 2023–31 March 2025

DOBA, Takahiro
Development of Iron-Catalyzed Carbon–Heteroatom Bond Formation Reactions
Research grant from the Institute of Synthetic Organic Chemistry
1 October 2023–30 September 2024

NAKAGAWA, Yuka
Pioneering Catalytic Reactions for Direct Synthesis of Functional Polymers from Wood
Grant-in-Aid for Early-Career Scientists
1 April 2023–31 March 2026

NAKAGAWA, Yuka
Development of Molecular Complex Catalysts for Converting Wood into Functional Materials
PRESTO, (Precursory Research for Embryonic Science and Technology), JST
30 September 2023–30 March 2027

MINEO, Keito
Integrated Scenario Analysis of Environmental Impacts and Economic Potential of Forest Management and Wood Uses
Daigas Research Grants for Young Researchers, Kyoto University
Open Innovation Institute
8 February 2023–7 February 2024

IMAI, Makiko
Analysis of Lignin Decomposition Mechanism That Produce Nanosheet Cellulose
Grant-in-Aid for Early-Career Scientists
1 April 2023–31 March 2026

— Advanced Solid State Chemistry —
SHIMAKAWA, Yuichi
Construction of Physical Property Correlation Based on Entropy and Creation of New Thermal Control Materials
Grant-in-Aid for Scientific Research (S)
12 April 2023–31 March 2028

SHIMAKAWA, Yuichi
Exploration of Functional Transition-Metal Oxides and Their Structure-Property Relationships
AdCORP (Advanced International Collaborative Research Program), JST
1 April 2023–31 March 2027

— Organometallic Chemistry —
OHKI, Yasuhiro
Synthesis and Reactions of Bio-Inspired Molecular Metal-Hydride Compounds
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a Proposed Research Area)
1 April 2021–31 March 2023

OHKI, Yasuhiro
Synthesis of Iron-Containing Cluster Complexes and Reducing Reactions with Multiple Metals
Grant-in-Aid for Scientific Research (B)
1 April 2023–31 March 2026

OHKI, Yasuhiro
Synthesis of Metal-Nanoclusters of Iron Group Metals
Grant-in-Aid for Challenging Research (Exploratory)
30 July 2020–31 March 2023

OHKI, Yasuhiro
Fuel Regeneration from CO₂ by Grid-Aligned Biomimetic Catalysts on Functionalized Silica
Grant-in-Aid for JSPS Fellows
8 March 2023–31 March 2025

OHKI, Yasuhiro
Electron Transfer Networks of Transition Metal Cluster Complexes for Catalytic Applications
CREST (Core Research for Evolutional Science and Technology), JST
1 October 2021–31 March 2027

TANIFUJI, Kazuki
CO₂/CO Reduction into Short-Chain Hydrocarbons Promoted by Cuboidal Metal-Sulfur Clusters
Grant-in-Aid for Scientific Research (C)
1 April 2022–31 March 2025

TANIFUJI, Kazuki
Structure-Function Relationships of a Fe/Mo-S-C Cluster Unique to N₂-Reducing Enzymes
Grant-in-Aid for Research Activity Start-up
30 August 2021–31 March 2023

HIGAKI, Tatsuya
Creation of Novel Cluster Nanomagnets with Strong Exchange Interactions
Grant-in-Aid for Early-Career Scientists
1 April 2023–31 March 2025

HIGAKI, Tatsuya
 Atomically Precise Synthesis of Iron-Group Metal Nanoclusters to Probe the Origin of Superparamagnetism
Grant-in-Aid for Research Activity Start-up
31 August 2022–31 March 2024

IZU, Hitoshi
Catalytic System for Carbon Dioxide Reduction Utilizing Sequence Control of Cubane-Type Complexes
Grant-in-Aid for Early-Career Scientists
1 April 2023–31 March 2025
— Nanophotonics —

KANEMITSU, Yoshihiko
Fusing Nanomaterials and Strong Electric Field Nonlinear Optics for New Advances in Photonics
Grant-in-Aid for Specially Promoted Research
23 April 2019–31 March 2024

KANEMITSU, Yoshihiko
Optical Responses of Ordered Alloy Nanomaterials and Nanomaterial-Based Superstructures
CREST (Core Research for Evolutional Science and Technology), JST
1 October 2021–31 March 2027

HIRORI, Hideki
Phononic Strong Coupling by THz Metamaterial and Its Applications to Material Control
Grant-in-Aid for Scientific Research (B)
1 April 2021–31 March 2025

YUMOTO, Go
Development of Polarization-Resolved Pump-Probe Microscopy and Study of Rashba Spin-Optoelectronics in Atomically Thin Materials
Grant-in-Aid for Early-Career Scientists
1 April 2023–31 March 2025

TAHARA, Hirokazu
Spatial and Temporal Super-Resolution Method for Revealing Quantum Cooperative Processes in Semiconductor Nanostructures
Grant-in-Aid for Scientific Research (B)
1 April 2022–31 March 2026

TAHARA, Hirokazu
Development of Nanostructured Semiconductor-Photon Coupled Systems for Giant Optoelectronic Amplification
Grant-in-Aid for Challenging Research (Exploratory)
30 June 2023–31 March 2025

TAHARA, Hirokazu
Development of Efficient Optoelectronic Devices with Quantum Cooperativity in Nanomaterial Superstructures
PRESTO (Precursory Research for Embryonic Science and Technology), JST
1 October 2023–31 March 2027

BIOINFORMATICS CENTER
— Chemical Life Science —

OGATA, Hiroyuki
Molecular Ecological Mechanism of Bloom Disintegration by Viral Infection
Grant-in-Aid for Scientific Research (A)
1 April 2022–31 March 2027

OGATA, Hiroyuki
Study of Giant Virus Ecology and Virus-Host Interaction in Aquatic Environments
Grant-in-Aid for Scientific Research (B)
1 April 2020–31 March 2023

OGATA, Hiroyuki
Viral Infection and Its Control Mechanisms of Marine Plankton Communities as Revealed by Dissolved Ribosomal RNA
Grant-in-Aid for Scientific Research (B)
1 April 2022–31 March 2026

ENDO, Hisashi
Viral Infection and Its Control Mechanisms of Marine Plankton Communities as Revealed by Dissolved Ribosomal RNA
Grant-in-Aid for Scientific Research (B)
1 April 2022–31 March 2025

ENDO, Hisashi
Plankton Communities Contributing to Marine Biological Pump on the Global Scale
Grant-in-Aid for Scientific Research (B)
1 April 2022–31 March 2025

ENDO, Hisashi
Experimental Investigation of the Effects of Phytoplankton Diversity on Ecosystem Functioning in the Ocean
Grant-in-Aid for Early-Career Scientists
1 April 2019–31 March 2023

ENDO, Hisashi
A Novel Dynamics Analysis of Marine Plankton Based on Genetic Information in the Dissolved Fraction of Seawater
CREST (Core Research for Evolutional Science and Technology), JST
1 October 2023–31 March 2029

ENDO, Hisashi
A Novel Dynamics Analysis of Marine Plankton Based on Genetic Information in the Dissolved Fraction of Seawater
PRESTO (Precursory Research for Embryonic Science and Technology), JST
1 October 2023–31 March 2027

OKAZAKI, Yusuke
Unveiling the Organic Matter Dynamics Functioning in Lake Hypolimnion
Grant-in-Aid for Scientific Research (A)
1 April 2022–31 March 2026

OKAZAKI, Yusuke
Elucidating the Molecular Heterogeneity of Dissolved Organic Matter That Governs Its Long-Term Persistence
Grant-in-Aid for Scientific Research (B)
1 April 2022–31 March 2025

OKAZAKI, Yusuke
Microbial Nitrogen Pump: Bacterial Semi-Labile Dissolved Organic Nitrogen as a Nutrient Transport Pathway in Aquatic Systems
Grant-in-Aid for Scientific Research (B)
1 April 2021–31 March 2024
OKAZAKI, Yusuke
Who is the Host of Uncultivated Viruses? Linking Viral and Bacterial Genomes in the Environment
Grant-in-Aid for Early-Career Scientists
1 April 2022–31 March 2025

OKAZAKI, Yusuke
Developing a High-Resolution Eco-Genomics Platform through Inter-Lake Comparisons
FOREST (Fusion Oriented Research for Disruptive Science and Technology), JST
1 April 2023–31 March 2030

OKAZAKI, Yusuke
Challenging Dry Questions in Environmental Microbiology and Virology from Wet
Kyoto University 125th Anniversary Fund Kusunoki 125
13 September 2021–31 March 2025

HIKIDA, Hiroyuki
Diversity of Giant Virus Infection Strategy
Grant-in-Aid for Early-Career Scientists
1 April 2022–31 March 2025

HIKIDA, Hiroyuki
Development of Novel Gene Engineering Technology Utilizing Giant Viruses
Strategic Basic Research Programs ACT-X, JST
1 October 2022–31 March 2025

— Mathematical Bioinformatics —

AKUTSU, Tatsuya
Advanced Studies and Developments on Discrete Preimage Problems
Grant-in-Aid for Scientific Research (A)
1 April 2022–31 March 2027

AKUTSU, Tatsuya
Analysis and Control of Steady States of Multiple Biological Networks
Grant-in-Aid for Challenging Research (Exploratory)
30 June 2022–31 March 2025

TAMURA, Takeyuki
Algorithms for Metabolic Network Design for Producing Useful Substances
Grant-in-Aid for Scientific Research (B)
1 April 2020–31 March 2025

MORI, Tomoya
Establishment of the Method for Biological Tissue Domain Estimation and Analysis Based on Spatial Omics Data
Grant-in-Aid for Scientific Research (C)
1 April 2023–31 March 2026

— Bio-knowledge Engineering —

MAMITSUKA, Hiroshi
Latent Data Structure Estimation through Integrating Diverse Data
Grant-in-Aid for Scientific Research (B)
1 April 2022–31 March 2025

MAMITSUKA, Hiroshi
Developing Machine Learning Based Bioinformatics to Decipher Hidden Biology of Depression Symptoms
Grant-in-Aid for JSPS Fellows
13 November 2020–31 March 2023

NGUYEN, Hao Canh
Machine Learning on Large Graphs
Grant-in-Aid for Scientific Research (C)
1 April 2018–31 March 2023

NGUYEN, Hao Canh
Machine Learning for Structure-Rich Data-Scarce Domains
Grant-in-Aid for Scientific Research (C)
1 April 2022–31 March 2025
AKAGI, Chika
D Sc, Kyoto University
“Study on Ribosome-related Gene Expression during Light Germination of Arabidopsis thaliana”
Supervisor: Prof AOYAMA, Takashi
23 March 2023

FUNADA, Shinsaku
D Sc, Kyoto University
“Magnetic Resonance Measurements in Ferrimagnets with Compensation Points”
Supervisor: Prof ONO, Teruo
17 January 2023

HIRAI, Yusuke
D Pharm Sci, Kyoto University
“Cytosolic Protein Delivery Using Lipid Nanoparticles”
Supervisor: Prof FUTAKI, Shiroh
24 March 2023

HU, Shuaifeng
D Sc, Kyoto University
“Surface Modifications of Mixed Tin-Lead Halide Perovskite Films for Solar Cells”
Supervisor: Prof WAKAMIYA, Atsushi
23 March 2023

IMAMURA, Yuji
D Eng, Kyoto University
“Advanced Control of Polymer Structure Based on Multiple Control in Radical Polymerization”
Supervisor: Prof YAMAGO, Shigeru
23 May 2023

JIANG, Yuhan
D Eng, Kyoto University
“Development of Practical Organotellurium-Mediated Radical Polymerization Based on Polymerization and Separation in a Two-phase System”
Supervisor: Prof YAMAGO, Shigeru
23 May 2023

JIN, Shuyu
D Med, Kyoto University
“Self-Assembling Small-Molecule Adjuvants as Antigen Nano-Carriers”
Supervisor: Prof UESUGI, Motonari
23 March 2023

KOSUGI, Yoshihisa
D Sci, Kyoto University
“Synthesis and Evaluation of Transition Metal Oxides Exhibiting Caloric Effects”
Supervisor: Prof SHIMAKAWA, Yuichi
23 March 2017

LI, Ruiming
D Inf, Kyoto University
“Analysis of Biological Networks by Graph Theory-Based Methods”
Supervisor: Prof AKUTSU, Tatsuya
23 March 2023
ORAL PRESENTATION

OKAZAKI, Daiki (Laser Matter Interaction Science)
“Development of Mid-Infrared Femtosecond Lasers and Their Applications”

YAMAUCHI, Mitsuaki (Organoelement Chemistry)
“Construction of Highly Ordered Quantum Dots and Organic Molecules with a Supramolecular Approach”

KINOSE, Yuji (Chemistry of Polymer Materials)
“Anchoring Property on Zero Azimuthal Anchoring Surface”

— ICR Award for Young Scientists —

TRUONG, Minh Anh (Molecular Aggregates)
“Tripodal Triazatruxene Derivative as a Face-on Oriented Hole-Collecting Monolayer for Efficient and Stable Inverted Perovskite Solar Cells”

MENG, Lingjie (Chemical Life Science)
“Mirusviruses Link Herpesviruses to Giant Viruses”

— ICR Award for Graduate Students —

CHO, Kenichi (Nanophotonics)
“Exciton-Phonon and Trion-Phonon Couplings Revealed by Photoluminescence Spectroscopy of Single CsPbBr3 Perovskite Nanocrystals”

ZHANG, Zhenya (Nanophotonics)
“Generation of Third-Harmonic Spin Oscillation from Strong Spin Precission Induced by Terahertz Magnetic near Fields”

TOH, Kohei (Chemical Biology)
“Chemoproteomic Identification of Blue-Light-Damaged Proteins”

— ICR Grants for Promoting Integrated Research —

HISATOMI, Ryusuke (Nanospintronics)
“Study of Phonon Angular Momentum Using Impulsive Stimulated Raman Scattering”

ABO, Masahiro (Chemical Biology)
“Development of Chemical Tools for Magnetic Manipulation of Biomolecules”

TAKAHATA, Ryo (Advanced Inorganic Synthesis); ISOZAKI, Katsuhiro (Synthetic Organotransformation)
“Development of a Connection-Number-Controlling Method for Nanoparticles”

HIKIDA, Hiroyuki (Chemical Life Science)
“Transcriptome Analysis in Virus-Infected Non-Model Organisms”

TRUONG, Minh Anh (Molecular Aggregates)
“Elucidating the Structure of Hole Collecting Monolayer in Perovskite Solar Cell”

POSTER PRESENTATIONS

— Organoelement Chemistry —

TRUONG, Minh Anh (Molecular Aggregates)
“Research Topics of Organoelement Chemistry Laboratory”

NISHINO, Ryohei; TOKITOH, Norihiro; YAMADA, Hiroko; MIZUHATA, Yoshiyuki
“Development of a Single Germanium Atom Transfer Reagent”

— Structural Organic Chemistry —

HU, Weizhe; MURATA, Yasujiro; HIROSE, Takashi
“Non-Linear Molecular Spring Properties of a Dibenzo[c,u][7]helicene Derivative Derived from Intramolecular Non-Covalent Interactions”

— Synthetic Organic Chemistry —

NAKAGAWA, Masanari; NAGAO, Kazunori; OHMIYA, Hirohsa
“A Light-Driven Hybrid Catalysis Enabling Construction of Azetidine via C-H Bond Activation”

— Advanced Inorganic Synthesis —

ZHU, Lingkai; SARUYAMA, Masaki; TERANISHI, Toshiharu
“Synthesis of 3D Ag Nanoparticle Superlattices and Their Structure-Specific Functions”

— Chemistry of Polymer Materials —

SEIKE, Yuki; KINOSE, Yuji; TSUJII, Yoshiharu
“Synthesis of Concentrated Polymer Brushes with Larger Thickness via Improved Livingness in Surface-Initiated Controlled Radical Polymerization”
— Polymer Controlled Synthesis —
TONG, Tianxiang; KIBUNE, Masato; TOSAKA, Masatoshi; MATSUMIYA, Yumi; WATANABE, Hiroshi; YAMAGO, Shigeru
“Synthesis of Structurally Controlled Dendritic Hyperbranched Polyacrylates by TERP and Their Rheological Properties”
MARU, Kosuke; ZHENG, Leshang; KAYAHARA, Eiichi; YAMAGO, Shigeru
“Synthesis of Cyclic π-conjugated Oligomers by the Insertion of Alkynes and Isocyanides into Cycloparaphenylene Metal Complexes”

— Inorganic Photonics Materials —
“Research Introduction of Inorganic Photonics Materials”

— Nanospintronics —
KAWARAZAKI, Ryo
“Spin Injection into a Superconductor without Inversion Symmetry”

— Biofunctional Design-Chemistry —
“Recent Research in the Laboratory of Biofunctional Design-Chemistry”
ASAMI, Yuri; OTONARI, Kenko; IMANISHI, Miki; FUTAKI, Shiroh
“Sequence-Specific Manipulation of RNA Methylation by Engineering of an RNA Demethylase, ALKBH5”

— Chemistry of Molecular Biocatalysts —
“Introduction of Chemistry of Molecular Biocatalysts Laboratory”

— Molecular Biology —
“Research of Molecular Biology Laboratory”

— Chemical Biology —
“Create New World of Bioactive Synthetic Molecules”

— Molecular Materials Chemistry —
“Molecular Materials Chemistry”
ISHIHARA, Kuraudo; KAJI, Hironori
“Molecular Orientation and Mobility Prediction of Organic Deposited Films by Multiscale Simulation”

— Hydrospheric Environment Analytical Chemistry —
“Reveal the Ocean by Using Trace Elements and Their Isotopes”
UEKI, Ryuta; ZHENG, Linjie; TAKANO, Shotaro; SOHRIN, Yoshiki
“Distribution of Zirconium, Hafnium, Niobium, and Tantalum in the Indian Ocean”

— Chemistry for Functionalized Surfaces —
ARAKI, Taisuke; SAKO, Nobuaki; SHIOYA, Nobutaka; YAJIMA, Tomoko; HASEGAWA, Takeshi
“Understanding of Physical Properties of Perfluoroalkanes by Infrared Spectroscopy Using Recrystallized Compounds”
SUGIMOTO, Emi; SHIOYA, Nobutaka; OKA, Takayuki; HASEGAWA, Takeshi
“Control of Crystal Orientation of Organic Semiconductors with Alkyl Side Chains in Thin Films by Low-Temperature Deposition”

— Molecular Microbial Science —
INOUE, Hiromu; KAWANO, Kenichi; KAWAMOTO, Jun; OGAWA, Takuya; KURIHARA, Tatsuo
“Diversity of Bacterial Extracellular Membrane Vesicles Determined by Nucleic Acid Content and the Genes Involved in Their Production”

— Polymer Materials Science —
“Polymer Materials Science”

— Molecular Rheology —
“Molecular Rheology Laboratory”

— Molecular Aggregates —
“Research in Molecular Aggregation Analysis Laboratory”
MURDEY, Richard; MATSUSHIGE, Yuko; OHASHI, Noboru; TRUONG, Minh Anh; NAKAMURA, Tomoya; WAKAMIYA, Atsushi
“Accelerated Testing of Perovskite Solar Cells”

— Particle Beam Science —
“Particle Beam Science Lab.”

— Laser Matter Interaction Science —
“Introduction of the Laser Matter Interaction Science Laboratory”
— Electron Microscopy and Crystal Chemistry —

“Research Activities in Division of Electron Microscopy and Crystal Chemistry”

— Atomic and Molecular Structures —

“Introduction of Atomic and Molecular Structures Laboratory”

— Synthetic Organotransformation —

“Introduction of Synthetic Organotransformation Laboratory”

— Advanced Solid State Chemistry —

“Research Reports in Advanced Solid State Chemistry”

— Organometallic Chemistry —

“Recent Research Topics of Organometallic Chemistry Group”

— Nanophotonics —

“Recent Research Topics of Nanophotonics Group”

— Mathematical Bioinformatics —

MU, Lixuan; SONG, Jiangning; MORI, Tomoya; AKUTSU, Tatsuya
“DiCleave: a Deep Learning Model for Predicting Human Dicer Cleavage Sites”

— Bio-knowledge Engineering —

NGUYEN, Can Hao
“Theoretical Study of Convex Clustering Algorithm”
SEMINARS

Prof AYELE, Belay
Department of Plant Science, University of Manitoba, Manitoba, Canada
“Insights into the Role of Jasmonate in Regulating Seed Dormancy in Wheat”
1 Jun 2023

Prof. BLACKBURN, Jeffrey
National Renewable Energy Laboratory (NREL), the U.S.
“Mixed-Dimensionality Nanoscale Heterojunctions for Energy Harvesting and Opto-Electronic Technologies”
24 November 2023

Assoc Prof BROERE, Daniël L. J.
Institute for Sustainable and Circular Chemistry, Utrecht University, the Netherlands
“Are Two Better than One? The Exploration of “Expanded Pincer” Ligands in Combination with Group 8 Metals in Hydrocarbon Activation and Homogeneous Catalysis”
10 August 2023

Prof CUMMINS, Christopher C.
Department of Chemistry, Massachusetts Institute of Technology, the U.S.
“Phosphorus-Element Bond-Forming Reactions from Pn to Phosphinidene Group Transfer”
15 September 2023

Prof DESTARAC, Mathias
Université Toulouse 3 Paul Sabatier, France
“Tailored Polyvinylamines by RAFT”
2 August 2023

Prof. EMORI, Satoru
Virginia Polytechnic Institute and State University, Virginia, the U.S.
“Damping and Spin-Orbit Torques in Vertically Graded Fe-Ni Films”
9 May 2023

Prof FAN, Xin
University of Denver, Colorado, the U.S.
“Spin Current Generation in Ferromagnetic Metals”
3 March 2023

Assoc Prof FERRIER, Robert C., Jr.
Michigan State University, Michigan, the U.S.
“Facile Epoxide Polymerizations with Sustainable Aluminum Catalysts”
18 January 2023

Prof FINOCCHIO, Giovanni
University of Messina, Italy
“High Performance Spintronic Devices for Microwave Technology and Computing”
26 May 2023

Prof FRATH, Denis
Laboratoire de Chimie, ENS Lyon, CNRS, France
“Photoredox Control of Electron-Responsive and Conductive Supramolecular Materials Based on Viologens”
16 November 2023

Assist Prof. FUKUI, Norihito
Graduate School of Engineering, Nagoya University, Nagoya, Japan
“Creation of Novel π-Conjugated Molecules with the Search Space inside the Molecular Skeleton”
27 July 2023

Dr. GALBIATI, Massimo
Institute of Agricultural Biology and Biotechnology, CNR, Milano, Italy
“Deciphering the Transcriptional Regulation of Stomatal Activity”
22 November 2023

Specially Appointed Prof HIGUCHI, Yoshiki
University of Hyogo, Hyogo, Japan
“Elemental Cycling Strategy by Organisms”
30 October 2023

Prof HILLEBRANDS, Burkard
TU Kaiserslauterun, Germany
“Advances in Coherent Magnonics”
24 May 2023

Assoc Prof HINGAMP, Pascal
Aix-Marseille University, France
“Hands-on Introduction to Bioinformatics”
4-8, 11-12, 25 September 2023

Prof HO, Rong-Ming
National Tsing Hua University, Taiwan
“Weighted Nanonetwork Materials from Block Copolymer Templates for Metamaterial Applications”
7 July 2023

Dr HO, Tung-Yuan
Research Center for Environmental Changes, Academia Sinica, Taiwan
“The Solubility and Deposition Flux of East Asian Aerosol Metals in the East China Sea: The Effects of Aeolian Transport Processes”
11 September 2023

Dr HSIEH, Chih-Chiang
Research Center for Environmental Changes, Academia Sinica, Taiwan
“The Contribution of East Asian Aerosol Metals in the Ocean: Sources, Transformation Processes and Deposition Fluxes”
2 October 2023

Prof HWANG, Chanyong
Korea Research Institute of Standards and Science, Korea, R
“Magnetic Skyrmion”
17 October 2023

Prof. ILIES, Laurean
RIKEN, Saitama, Japan
“Catalyst Design for Selective and Efficient Reactions”
2 June 2023
Dr IMADA, Hiroshi
Surface and Interface Science Laboratory, RIKEN, Wako, Japan
“Developing Various Dimer Systems Based on Single-Molecule Manipulation Techniques and Evaluation of Their Optical Properties”
19 October 2023

Prof ISOBRE, Hiroyuki
The University of Tokyo, Tokyo, Japan
“Organic Chemistry: From the Basics to the Current Style”
1 June 2023

Prof ISOBRE, Hiroyuki
The University of Tokyo, Tokyo, Japan
“Phenine Nanocarbon Molecules”
2 June 2023

Prof ISOBRE, Hiroyuki
The University of Tokyo, Tokyo, Japan
“Organic Chemistry: From Structure and Synthesis to Boundaries”
20 November 2023

Prof ISOBRE, Hiroyuki
The University of Tokyo, Tokyo, Japan
“Supramolecular Science of Nanocarbon Molecules”
21 November 2023

Dr. KAKSIS, Edgar Vienna
Vienna University of Technology, Austria
“Scaling of Peak and Average Power in Femtosecond Ytterbium Amplifiers”
9 March 2023

Prof KIHARA, Daisuke
Purdue University, the U.S.
28 June 2023

Prof KOBAYASHI, Toshihide
Centre National de la Recherche Scientifique (CNRS), France
“Regulatory Proteins for the Asymmetric Distribution of Sphingomyelin”
25 May 2023

Prof LIAN, Tianquan
Department of Chemistry, Emory University, Georgia, the U.S.
“Structure and Dynamics at Metal Electrode/Electrolyte Interface Probed by In situ Electrochemical Surface Enhanced/Selective Vibrational Spectroscopy”
8 May 2023

Prof. LIN, Hao-Wu
National Tsing Hua University, Taiwan
“Perovskite Optoelectronic Devices: Solar Cells and Beyond”
5 July 2023

Prof LIU, Hongbin
The Hong Kong University of Science and Technology, China P.R.
“Diversity and adaptation of Synechococcus in Estuarine Waters”
20 January 2023

Prof MARGETIĆ, Davor
Ruder Bošković Institute, Croatia
“The Reactivity of Guanidine Substituted Furans and Pyroles in Cycloaddition Reactions”
11 September 2023

Prof MARTIN-VACA, Blanca
Paul Sabatier University and Centre national de la Recherche Scientifique, France
“Cooperative Catalysis with Pd and Pt Pincer Complexes”
3 March 2023

Prof MINDIOLA, Daniel J.
Department of Chemistry, University of Pennsylvania, the U.S.
“New Developments in Low-Valent and Early Transition Metal Ions, Metal-Ligand Multiple Bonds, and Catalytic Reactions Involving Methane”
11 July 2023

Prof NAKAI, Madoka
Tokyo University of Agricultural and Technology, Tokyo, Japan
“Frontiers of Insect Virus Research Contributing to Pesticide Reduction and Training the Next Generation of Researchers”
27 December 2023

Prof NAKANO, Ken et al.
Yokohama National University, Yokohama, Japan
“SRT Basic Seminar (Series of 8 Sessions)”
6-30 July 2023

Prof NGUYEN, Thuc-Quyen
Department of Chemistry & Biochemistry, University of California Santa Barbara, California, the U.S.
“Designing Organic Semiconductors for Energy Generation and Infrared Sensing”
11 December 2023

Dr NISHIMURA, Masaki
Technology Research Institute of Osaka Prefecture, Osaka, Japan
26 May 2023

Prof NOMURA, Nobuhiko
Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
“Emergence of Bacterial Community Formation and Sociality”
30 January 2023

Prof OGASAWARA, Masamichi
Department of Natural Science, Graduate School of Science and Technology, Tokushima University, Tokushima, Japan
“Enantioselective Catalytic Synthesis of Chiral Transition Metal Complexes”
27 January 2023

Dr. OGAWA, Satoshi
Botany and Plant Sciences Faculty, University of California, Riverside, California, the U.S.
“Molecular Basis for Host Tropism in Orobanchaceae Parasitic Plants”
21 November 2023

Prof POPMINTCHEV, Tenio
University of California San Diego, the U.S.
“Quantum Optics Meets Strong Field Physics: Novel Regimes of Coherent X-Ray Generation with Strong Electron Correlation Dynamics and Attosecond Rabi Oscillations”
12 December 2023

Prof RIVARD, Eric
Department of Chemistry, University of Alberta, Alberta, Canada
“Frustrated Lewis Pair (FLP) Chelation for Main Group Materials Synthesis”
8 March 2023
Assist Prof. RUBIO, Vicente
Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
“Dangerous Liaisons: COP1 and DET1 Regulatory Loops in Controlling Plant Development”
12 October 2023

Assist Prof. SADIQ, Nausheen W.
Department of Chemistry, Mount Royal University, Canada
“Evaluating Risk to Human Health Associated with Microplastics, Contaminated Soils, Waters and a Variety of Food Samples at the Elemental Level Using ICP-MS”
9 March 2023

Prof. SAITO, Hiroaki
Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan
“Prochlorococcus in the Indian Ocean”
20 January 2023

Assoc Prof. SAKAI, Munetoshi
Ibaraki University, Ibaraki, Japan
“Functional Evaluation Method for Dynamic Wettability on Solid Surfaces”
28 August 2023

Assoc Prof. SARAKONSRI, Thapanee
Department of Chemistry, Faculty of Science, Chiang Mai University, Thailand
“Enhanced Electrochemical Performance of Nanocomposite Anode Materials with High Energy Density, Ultrafast-Charging and Stable Cycling for High-Efficiency Li-Ion Batteries”
5 June 2023

Prof. SASAMORI, Takahiro
University of Tsukuba, Ibaragi, Japan
“Introduction of Single Crystal X-ray Diffraction Analysis - Key Points to Consider When Facing Analytical Challenges”
14 June 2023

Dr. SATO, Yuya
Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
“Emergence of Unique Biological Functions Triggered by Microbe-Driven Interspecies Relationships”
17 November 2023

Prof. SCHELER, Ulrich
Leibniz-Institut für Polymerforschung Dresden e. V., Germany
“NMR Studies for Complex Polymer Materials”
30 October 2023

Dr. SHI, Dongbo
Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
“Identification of Cambium Stem Cells and Their Dynamics”
26 July 2023

Prof. SUNAGAWA, Shinichi
Institute of Microbiology and Swiss Institute of Bioinformatics ETH Zurich, Germany
“The Ocean Microbiome as a Treasure Trove for Novel Taxa, Enzymes and Bioactive Compounds”
25 July 2023

Prof. TABOR, Alethea
Department of Chemistry, University College of London, the U.K.
“Liposome-Based Theragnostic Nanoparticles for Cancer Imaging, Nucleic Acid and Drug Delivery”
5 September 2023

Lect. TASHIRO, Yosuke
College of Engineering, Shizuoka University, Shizuoka, Japan
“Diversity of Bacterial Membrane Vesicles and the Molecular Basis for the Regulation of Vesicle Production”
17 May 2023

Prof. TCHORZEWSKI, Marek
Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Poland
28 June 2023

CNRS Research Fellow THILL, Anis
University of Lyon 1, France
“Valorization of Greenhouse Gases: CO2, SF6 and Beyond”
30 October 2023

Prof. TOKUYAMA, Hidetoshi
Tohoku University, Miyagi, Japan
“Novel Oxygen Oxidation Reaction and Unprotected Peptide Dimerization and its Application to Alkaloid Synthesis”
21 November 2023

Assist Prof. TSUCHIDO, Yoshitaka
Faculty of Science Division I, Tokyo University of Science, Tokyo, Japan
“Synthesis and Functions of Cyclic π-Conjugated Compounds via Macro cyclic Gold Complexes”
26 May 2023

Prof. VAZQUEZ, Manuel
Spanish National Council for Research, Spain
“Cylindrical Magnetic Micro and Nanowires: from Topology Effects of Curvature to Sensing Applications”
26 May 2023

Prof. WATERMAN, Rory
University of Vermont, California, the U.S.
“Metal-Catalyzed Routes to Low-Valent Main Group Fragments”
8 May 2023

Prof. WECKWERTH, Wolfram
University of Vienna, Austria
“Multiomics, AI and Data-Driven Inverse Modelling - from Environmental Sciences to Molecular Medicine”
16 November 2023

Prof. WEITZ, Joshua
University of Maryland, the U.S.
“Marine Viral Dynamics: Lessons from an Imperfect Predator”
7 July 2023

Prof. WIRTH, Thomas
Cardiff University, the U.K.
“New Opportunities for Flow Electrochemistry”
27 September 2023

Prof. YAMAKOSHI, Yoko
Institute of Chemistry, Chinese Academy of Sciences, China P.R.
“New Conjugated Molecules for Organic and Polymeric Semi-conductors”
11 December 2023
MEETINGS AND SYMPOSIA

International Workshop on Bioinformatics and Systems Biology (IBSB)
Organized by MAMITSUKA, Hiroshi
17-21 January 2023 (Berlin, Germany)

Future Drug Discovery Empowered by Chemical Biology
Organized by UESUGI, Motonari
21-22 February 2023 (Nara, Japan)

ACBI 2023 Toba Meeting
Organized by UESUGI, Motonari
22-24 February 2023 (Mie, Japan)

Spin-RNJ Symposium 2022
Organized by ONO, Teruo
20 March 2023 (Kyoto, Japan)

NIH Shonan Seminar, NO.179 Computational Metabolomics and Machine Learning
Organized by MAMITSUKA, Hiroshi
8-11 May 2023 (Kanagawa, Japan)

The 19th Akabori Conference
Organized by FUTAKI, Shiroh
16-20 May 2023 (Shiga, Japan)

10th Pacific Symposium on Radical Chemistry (PSRC-10)
Organized by YAMAGO, Shigeru
4-9 June 2023 (Kyoto, Japan)

The 1st Kyoto-SKKU Workshop
Organized by WAKAMiya, Atsushi
5 June 2023 (Kyoto, Japan)

RURSS Unit Meeting #1 in 2023: Toward Starting Over of PFAS Science
Organized by HASEGAWA, Takeshi
30 June 2023 (Kyoto, Japan)

Frontiers of Disease Informatics (Workshop in IIBMP 2023)
Organized by AKUTSU, Tatsuya
8 September 2023 (Kashiwa, Japan)

1st Expert Committee on Mid-Infrared Laser Technology
Organized by TOKITA, Shigeki
27 September 2023 (Kyoto, Japan)

The First Perovskite International Research Collaboration Center (PIRCC) Workshop
Organized by WAKAMIYA, Atsushi
3 October 2023 (Kyoto, Japan)
INDEX
<table>
<thead>
<tr>
<th>NAME INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE, Reiji</td>
</tr>
<tr>
<td>ABO, Masahiro</td>
</tr>
<tr>
<td>ADACHI, Yuta</td>
</tr>
<tr>
<td>AKAGI, Shikoh</td>
</tr>
<tr>
<td>AKUTSU, Tatsuya</td>
</tr>
<tr>
<td>AOKI, Satoshi</td>
</tr>
<tr>
<td>AOKI, Takamasa</td>
</tr>
<tr>
<td>AYAMA, Takashi</td>
</tr>
<tr>
<td>ARAKAWA, Masato</td>
</tr>
<tr>
<td>ARAKI, Taisuke</td>
</tr>
<tr>
<td>ASAMI, Yuri</td>
</tr>
<tr>
<td>AVENA, Ramon Francisco Bernardino</td>
</tr>
<tr>
<td>[A]</td>
</tr>
<tr>
<td>[B]</td>
</tr>
<tr>
<td>BABA, Nozomi</td>
</tr>
<tr>
<td>BAN, Hiroki</td>
</tr>
<tr>
<td>BANDO, Shunsuke</td>
</tr>
<tr>
<td>[C]</td>
</tr>
<tr>
<td>CAI, Pinghe</td>
</tr>
<tr>
<td>CHAN, Cheuk-Yin</td>
</tr>
<tr>
<td>CHAOLUMEN</td>
</tr>
<tr>
<td>CHEN, Chien-Yu</td>
</tr>
<tr>
<td>CHEN, Jingjie</td>
</tr>
<tr>
<td>CHEN,利亚</td>
</tr>
<tr>
<td>CHEN, Tze-Shin</td>
</tr>
<tr>
<td>CHIGA, Yuki</td>
</tr>
<tr>
<td>CHO, Kenichi</td>
</tr>
<tr>
<td>CUI, Yan</td>
</tr>
<tr>
<td>[D]</td>
</tr>
<tr>
<td>DAIKOKU, Yusuke</td>
</tr>
<tr>
<td>DOBA, Takahiro</td>
</tr>
<tr>
<td>[E]</td>
</tr>
<tr>
<td>ENDO, Hisashi</td>
</tr>
<tr>
<td>[F]</td>
</tr>
<tr>
<td>FANG, Yue</td>
</tr>
<tr>
<td>FARRAG, Asma Mostafa Abdelbari</td>
</tr>
<tr>
<td>FUSU, Jincheng</td>
</tr>
<tr>
<td>FUJI, Souta</td>
</tr>
<tr>
<td>FUJIIHASHI, Akiko</td>
</tr>
<tr>
<td>FUJI, Tomomi</td>
</tr>
<tr>
<td>FUJIMOTO, Seitarou</td>
</tr>
<tr>
<td>FUJINAKA, Masatoshi</td>
</tr>
<tr>
<td>FUJISAKI, Yoshie</td>
</tr>
<tr>
<td>FUJITA, Satoki</td>
</tr>
<tr>
<td>FUJIIWARA, Masanori</td>
</tr>
<tr>
<td>FUKUMOTO, Koto</td>
</tr>
<tr>
<td>FUKUSHIMA, Shohei</td>
</tr>
<tr>
<td>FUNADA, Shinsaku</td>
</tr>
<tr>
<td>FUTAKI, Shiroy</td>
</tr>
<tr>
<td>[G]</td>
</tr>
<tr>
<td>GALBIATI, Massimo</td>
</tr>
<tr>
<td>GARCIA MARTIN, Susana</td>
</tr>
<tr>
<td>GHAFOOR, Maomoona</td>
</tr>
<tr>
<td>GO, Touran</td>
</tr>
<tr>
<td>GONG, Chunjie</td>
</tr>
<tr>
<td>GOTO, Haruki</td>
</tr>
<tr>
<td>GOTO, Masato</td>
</tr>
<tr>
<td>GOTO, Yamato</td>
</tr>
<tr>
<td>GU, Jiayian</td>
</tr>
<tr>
<td>[H]</td>
</tr>
<tr>
<td>HAGHIR, Shahrzad</td>
</tr>
<tr>
<td>HAMADA, Kouki</td>
</tr>
<tr>
<td>HAMAMOTO, Hiroki</td>
</tr>
<tr>
<td>HAN, Mingjing</td>
</tr>
<tr>
<td>HARAMATSU, Megumi</td>
</tr>
<tr>
<td>HARATA, Fuyuki</td>
</tr>
<tr>
<td>HARIKI, Nene</td>
</tr>
<tr>
<td>HARUTA, Mitsutaka</td>
</tr>
<tr>
<td>HASEGAWA, Akio</td>
</tr>
<tr>
<td>HASEGAWA, Takeshi</td>
</tr>
<tr>
<td>HASHIDA, Masaki</td>
</tr>
<tr>
<td>HASHIKAWA, Yoshifumi</td>
</tr>
<tr>
<td>HASHIMOTO, Ruito</td>
</tr>
<tr>
<td>HAYASHI, Daisu</td>
</tr>
<tr>
<td>HELMS, Melanie</td>
</tr>
<tr>
<td>HERBSCHLEB, Ernst David</td>
</tr>
<tr>
<td>HIGAKI, Tatsuya</td>
</tr>
<tr>
<td>HIGASUMURA, Chika</td>
</tr>
<tr>
<td>HIKIDA, Hirokuni</td>
</tr>
<tr>
<td>HINGAMP, Pascal Michel</td>
</tr>
<tr>
<td>HIRANO, Toshiko</td>
</tr>
<tr>
<td>HIROI, Hideki</td>
</tr>
<tr>
<td>HIROSE, Hisaki</td>
</tr>
<tr>
<td>HIROSE, Takashi</td>
</tr>
<tr>
<td>HISATOMI, Ryusuke</td>
</tr>
<tr>
<td>HO, Yi-Ning</td>
</tr>
<tr>
<td>HONDA, Naoki</td>
</tr>
<tr>
<td>HOSHI, Yutaro</td>
</tr>
<tr>
<td>HOSOMI, Yu</td>
</tr>
<tr>
<td>HOSOYA, Tomoki</td>
</tr>
<tr>
<td>HSIEH, Chih-Chiang</td>
</tr>
<tr>
<td>HSU, Zi-Chu</td>
</tr>
<tr>
<td>HU, Weizhe</td>
</tr>
<tr>
<td>HUANG, Guanglin</td>
</tr>
<tr>
<td>[I]</td>
</tr>
<tr>
<td>ICHIKAWA, Noriya</td>
</tr>
<tr>
<td>IDA, Naka</td>
</tr>
<tr>
<td>IIHOSHI, Makoto</td>
</tr>
<tr>
<td>IIJIMA, Ryo</td>
</tr>
<tr>
<td>IMADA, Hiroshi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAI, Hiroki</td>
</tr>
<tr>
<td>IMAI, Makiko</td>
</tr>
<tr>
<td>IMANISHI, Miki</td>
</tr>
<tr>
<td>IMAO, Keisuke</td>
</tr>
<tr>
<td>IMURA, Naohiro</td>
</tr>
<tr>
<td>INOUE, Hiromu</td>
</tr>
<tr>
<td>ISERI, Kenta</td>
</tr>
<tr>
<td>ISHIDA, Koichiro</td>
</tr>
<tr>
<td>ISHIHARA, Kuraudo</td>
</tr>
<tr>
<td>ISOBE, Hiroyuki</td>
</tr>
<tr>
<td>ISODA, Kumi</td>
</tr>
<tr>
<td>ISODA, Yosuke</td>
</tr>
<tr>
<td>ISOZAKI, Katsuhiro</td>
</tr>
<tr>
<td>ITO, Mayuri</td>
</tr>
<tr>
<td>ITO, Tomoya</td>
</tr>
<tr>
<td>IWAKI, Takuma</td>
</tr>
<tr>
<td>IWASAKI, Yasuko</td>
</tr>
<tr>
<td>IWASE, Msato</td>
</tr>
<tr>
<td>IWASHIMIZU, Chisaki</td>
</tr>
<tr>
<td>IWATA, Takahiro</td>
</tr>
<tr>
<td>IZU, Hitoshi</td>
</tr>
<tr>
<td>JANG, Heechan</td>
</tr>
<tr>
<td>JAYAKUMAR, Sanjeevi</td>
</tr>
<tr>
<td>JIANG, Yue</td>
</tr>
<tr>
<td>JIANG, Yuhan</td>
</tr>
<tr>
<td>JIANG, Zhiqian</td>
</tr>
<tr>
<td>JIN, Shuyu</td>
</tr>
<tr>
<td>JIN, Yihou</td>
</tr>
<tr>
<td>JO, Yoshiyuki</td>
</tr>
<tr>
<td>KAJI, Hironori</td>
</tr>
<tr>
<td>KAKIMOTO, Ryoehi</td>
</tr>
<tr>
<td>KAMEDA, Monami</td>
</tr>
<tr>
<td>KAMIYAMA, Naoya</td>
</tr>
<tr>
<td>KAN, Daisuke</td>
</tr>
<tr>
<td>KANAI, Tsutou</td>
</tr>
<tr>
<td>KANEMECHI, Minoru</td>
</tr>
<tr>
<td>KANEMITSU, Yoshikio</td>
</tr>
<tr>
<td>KARITANI, Shu</td>
</tr>
<tr>
<td>KASAHARA, Chisato</td>
</tr>
<tr>
<td>KASAHARA, Shoma</td>
</tr>
<tr>
<td>KATO, Itsuki</td>
</tr>
<tr>
<td>KATO, Mariko</td>
</tr>
<tr>
<td>KAWABATA, Kazuhiro</td>
</tr>
<tr>
<td>KAWAGUCHI, Yoshimasa</td>
</tr>
<tr>
<td>KAWAMOTO, Jun</td>
</tr>
<tr>
<td>KAWARAZAKI, Ryo</td>
</tr>
<tr>
<td>KAWASE, Riku</td>
</tr>
<tr>
<td>KAWASHIMA, Hiroyuki</td>
</tr>
<tr>
<td>KAYAHARA, Eiichi</td>
</tr>
<tr>
<td>KIHARA, Ayako</td>
</tr>
<tr>
<td>KIKKAWA, Ayumi</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>SHIMOYAMA, Sayaka</td>
</tr>
<tr>
<td>SHIMURA, Reo</td>
</tr>
<tr>
<td>SHINYA, Hiromi</td>
</tr>
<tr>
<td>SHIODA, Yuizuru</td>
</tr>
<tr>
<td>SHIOTA, Koji</td>
</tr>
<tr>
<td>SHIOTA, Voichi</td>
</tr>
<tr>
<td>SHIOTA, Yudai</td>
</tr>
<tr>
<td>SHIROYA, Nobutaka</td>
</tr>
<tr>
<td>SHIZU, Katsuyuki</td>
</tr>
<tr>
<td>SHIZU, Matsuhiro</td>
</tr>
<tr>
<td>SHIZU, Tetsuhiro</td>
</tr>
<tr>
<td>SHIZU, Takehiro</td>
</tr>
<tr>
<td>SHIZU, Tatsuhiko</td>
</tr>
<tr>
<td>SHOA, Frederick Tzeki</td>
</tr>
<tr>
<td>SO, Jiajie</td>
</tr>
<tr>
<td>SUYAMA, Yahei</td>
</tr>
<tr>
<td>SUZUKI, Hiroshi</td>
</tr>
<tr>
<td>SUZUKI, Katsuaki</td>
</tr>
<tr>
<td>SUGI, Koki</td>
</tr>
<tr>
<td>SUGI, Tomohiko</td>
</tr>
<tr>
<td>SUWANAWAT, Nittikarn</td>
</tr>
<tr>
<td>SUZUKI, Chihiro</td>
</tr>
<tr>
<td>SUZUKI, Matsuhiro</td>
</tr>
<tr>
<td>SUZUKI, Takehiro</td>
</tr>
<tr>
<td>SUN, Liangjie</td>
</tr>
<tr>
<td>TSUGI, Koki</td>
</tr>
<tr>
<td>TSUGI, Yuki</td>
</tr>
<tr>
<td>TSUJII, Takehiro</td>
</tr>
<tr>
<td>TSUJI, Ryuta</td>
</tr>
<tr>
<td>TSUKADA, Kyosuke</td>
</tr>
<tr>
<td>TACHIBANA, Mariko</td>
</tr>
<tr>
<td>TAKAGI, Motoshige</td>
</tr>
<tr>
<td>TAKAHASHI, Hiroki</td>
</tr>
<tr>
<td>TAKAHATA, Ryo</td>
</tr>
<tr>
<td>TAKAKI, Shotaro</td>
</tr>
<tr>
<td>TAKAKA, Hiroki</td>
</tr>
<tr>
<td>TAKAGI, Motoshi</td>
</tr>
<tr>
<td>TANG, Wei</td>
</tr>
<tr>
<td>TANIFUJI, Kazuki</td>
</tr>
<tr>
<td>TERADA, Sakahiro</td>
</tr>
<tr>
<td>TERASHI, Kento</td>
</tr>
<tr>
<td>TERAISHI, Toshiharu</td>
</tr>
<tr>
<td>TIAO, Wu</td>
</tr>
<tr>
<td>TOBITA, Naoto</td>
</tr>
<tr>
<td>TOGISHI, Kanata</td>
</tr>
<tr>
<td>TOH, Kohei</td>
</tr>
<tr>
<td>TOKITA, Shigeki</td>
</tr>
<tr>
<td>TOKITO, Norhiro</td>
</tr>
<tr>
<td>TOKORO, Fugo</td>
</tr>
<tr>
<td>YOSHIDA, Riki</td>
</tr>
<tr>
<td>YOSHIDA, Satoru</td>
</tr>
<tr>
<td>YOSHIE, Shunsuke</td>
</tr>
<tr>
<td>YOSHIGAI, Yoshiya</td>
</tr>
<tr>
<td>YU, Zhaoxi</td>
</tr>
<tr>
<td>YUMOTO, Go</td>
</tr>
<tr>
<td>ZHANG, Hao</td>
</tr>
<tr>
<td>ZHANG, Liwen</td>
</tr>
<tr>
<td>ZHANG, Ruixuan</td>
</tr>
<tr>
<td>ZHANG, Yixin</td>
</tr>
<tr>
<td>ZHANG, Zheng</td>
</tr>
<tr>
<td>ZHANG, Zhenya</td>
</tr>
<tr>
<td>ZHU, Lingkai</td>
</tr>
<tr>
<td>ZHU, Mengshan</td>
</tr>
<tr>
<td>[U]</td>
</tr>
<tr>
<td>UCHIDA, Daichi</td>
</tr>
<tr>
<td>ZHAO, Hongda</td>
</tr>
<tr>
<td>ZHAO, Jiaxing</td>
</tr>
<tr>
<td>ZHENG, Linjie</td>
</tr>
<tr>
<td>ZHONG, Yezhao</td>
</tr>
<tr>
<td>[X]</td>
</tr>
<tr>
<td>XIA, Jun</td>
</tr>
<tr>
<td>XIA, Yan</td>
</tr>
<tr>
<td>XIE, Lingling</td>
</tr>
<tr>
<td>XIE, Xuanhao</td>
</tr>
<tr>
<td>[Y]</td>
</tr>
<tr>
<td>YAMADA, Hiroko</td>
</tr>
<tr>
<td>YAMADA, Takumi</td>
</tr>
<tr>
<td>YAMAGISHI, Yuko</td>
</tr>
<tr>
<td>YAMAGO, Shigeru</td>
</tr>
<tr>
<td>YAMAGUCHI, Shinjiro</td>
</tr>
<tr>
<td>YAMAMOTO, Ayumu</td>
</tr>
<tr>
<td>YAMASAKI, Daisuke</td>
</tr>
<tr>
<td>YAMACHI, Mitsuaki</td>
</tr>
<tr>
<td>YAMIN, Naila</td>
</tr>
<tr>
<td>YANADA, Mitsuho</td>
</tr>
<tr>
<td>YANG, Qingwei</td>
</tr>
<tr>
<td>YANG, Yi</td>
</tr>
<tr>
<td>YANG, Yuanzheng</td>
</tr>
<tr>
<td>YASUDA, Yuka</td>
</tr>
<tr>
<td>YASUHARA, Ryo</td>
</tr>
<tr>
<td>YESUI, Kentaro</td>
</tr>
<tr>
<td>YE, Feifan</td>
</tr>
<tr>
<td>YIN, Haozhi</td>
</tr>
</tbody>
</table>
KEYWORD INDEX

[A]
- Accelerator Physics 42
- Amorphous Materials 28
- Analytical Chemistry 30
- Aromatic Compound 4
- Artificial Intelligence 62

[B]
- Bacterial Cold-Adaptation Mechanism 34
- Beam Physics 42
- Bioinformatics 58, 62
- Bioinorganic Chemistry 54
- Biosynthesis 22
- Boolean Networks 60
- Boron Molecule 8

[C]
- Channeling 46
- Chemical Biology 26
- Chemical Genetics 26
- Chemical Graphs 60
- Chemical Library 26
- Complex Networks 60
- π-Conjugated Systems 6
- COP9 Signalosome 24
- Crystal 48
- Curved π-Conjugated Molecules 14
- Cytochrome P450 22

[D]
- Data Mining 62
- Diamond 16
- Dielectric Spectroscopy 38
- DNA/RNA Binding Protein 20
- Dynamic Nuclear Polarization 28
- Enhanced NMR 28

[E]
- EELS 46
- Electron Linac 42
- Elemental Mapping 46
- Endohedral Fullerenes 6
- Environmental Genomics 58
- Epitaxial Thin Film Growth 52
- Extracellular Membrane Vesicle 34
- Extremophiles 34

[F]
- Femtosecond Laser Spectroscopy 56
- Functional Materials 6, 40
- Functional Metal Oxides 52

[G]
- GenomeNet 58

[H]
- HAADF 46
- Helical Structures 6
- Heterointerface 52
- Hierarchical Structure 36
- High Harmonic Generation 56
- High Power Laser Optics 44
- High Pressure Synthesis 52
- Homogeneous Catalysis 54
- Hybrid Materials 12

[I]
- Immunochemistry 26
- Infrared and Raman Spectroscopy 32
- Inorganic Nanomaterials 10
- Intracellular Delivery 20
- Iron Catalysis 50

[J]
- Laser Isotope Separation 44
- Laser Nano-Ablation Physics 44
- Laser-Plasma Interaction Physics 44
- Living Radical Polymerization 12, 14

[K]
- Machine Learning 62
- Magnetic Materials 18
- Magnetism 18
- Main Group Element 4
- Marine Chemistry 30
- Membrane Curvature 20
- Membrane-Permeable Peptides 20
- Mesoscopic Model 38
- Metal Ion Recognition 30
- Molecular Aggregation 40
- Molecular Design and Synthesis 40
- Molecular Evolution 58
- Morphogenesis 24
- mRNA Processing 24

[L]
- Quantum Chemical Calculation 28
- Quantum Dots 10, 56
- Quantum Information Science 16
- Quantum Materials 16
- Quantum Sensing 16

[M]
- Neural Networks 60
- Nitrogen Fixation 54
- NV Center 16

[N]
- Organic Light-Emitting Diodes 28
- Organic Semiconductor 4
- Organic Semiconductors 32
- Organic Synthesis 14
- Organocatalysis 8
- Organotransformation 50
- Oxidation Reduction Reactions 10

[P]
- Peptide Design 20

Perfluoroalkyl Compounds 32
Perovskite Solar Cells 40
Perovskites 56
Phospholipid Acyltransferase 34
Phospholipid Signaling 24
Photocatalysts 10
Photoredox Catalysis 8
Plant Hormone 22
Plasmonics 10
pMAIRS and MAIRS2 32
Polymer Brush 12
Polymer Physics 14, 36
Polymer Properties 36
Polymer Synthesis 14
Polysaturated Fatty Acid 34
Precision Polymerization 12
Protein Crystallography 48
Protein Informatics 60
Quantum Chemical Calculations 28
Quantum Dots 10, 56
Quantum Information Science 16
Quantum Materials 16
Quantum Sensing 16
Radical Reaction 8
Radical Species 6
Reactive Intermediate 4
Receptor 22
Rheology 38
Self Assembly 36
Self-Assembly 4, 26
Semiconductors 40
Signal Transduction 24
Single Photon Spectroscopy 56
Soft Matter 38
Softmater 36
Solid State Chemistry 52
Solid-State NMR 28
Spintronics 18
Stable Isotopes 30
STEM 46
Storage Ring 42
Strigolactone 22
Structural Biology 48
Structure and Function 48
Supramolecular & Superatomic Catalysis 50
Surface and Interface Chemistry 32
Synthetic Reactions 8
Systems Biology 62
[T]	Trace Elements	30
	Transition Metal Clusters	54
	Tribology	12
[U]	Ultrafast Laser Physics	44
	Unstable Nuclear Physics	42
[V]	Virology	58
[W]	Woody Molecular Transformation	50
[X]	X-ray Crystallographic Analysis	48