Division of Environmental Chemistry
– Molecular Materials Chemistry –

http://www.molmat.kuiryuko-ku.ac.jp/index-e.html

Prof
KAIJI, Hiromori
(D Eng)
Assoc Prof
GOTO, Atushi
(D Eng)
Techn Staff
OHMINE, Kyoko
Techn Staff
MAENO, Ayaka
PD
OHTSUKI, Akimichi
(D Sc)

Lect (pt)
NISHIYAMA, Yusuke (D Sc) JEOL Resonance

Researchers
FUKUSHIMA, Tatsuya TANISHIMA, Miho

Students
SUZUKI, Furitsu (D3) FURUKAWA, Shinya (M2) OKUDA, Takashi(UG)
OIWA, Hajime (M2) SUZUKI, Hajime (M1) TANAKA, Fumiya (UG)
FUJIMURA, Subaru (M2) DETANI, Masahiro (M1)

Scope of Research

Our research target is to develop high-performance organic electroluminescence devices, organic solar cells, and polymer materials. For the purpose, we have carried out syntheses, device fabrications, precise structure characterizations, and quantum chemical calculations for high functional organic materials. Along with exploring novel synthetic routes and novel devices, detailed analyses of structures and dynamics are performed mainly by sophisticated solid-state NMR spectroscopy in order to obtain structure-dynamics-property relationships.

KEYWORDS
Solid-State NMR Organic Solar Cells
Amorphous Materials Living Radical Polymerization
Organic Light-Emitting Diodes Quantum Chemical Calculation

Selected Publications
Green- and Blue-Emitting Organic LED Materials: Preparation of Polymorphs and Application to Organic LEDs

Tris(8-hydroxyquinoline) aluminum(III) (Alq$_3$) is known to have two isomeric states, namely meridional and facial isomers. Typical Alq$_3$ crystals composed of meridional and facial isomers are α- and δ-form crystals, respectively. First, we investigate the temperature change in the crystalline forms of α-Alq$_3$ and δ-Alq$_3$ in X-ray diffraction experiments in a vacuum. α-Alq$_3$ remains in α-form up to 300$^\circ$C, immediately before sublimation. In contrast, δ-Alq$_3$ is found to transform into γ-form at \sim180$^\circ$C, and remain in γ-form immediately before sublimation. Both γ-Alq$_3$ and δ-Alq$_3$ are composed of facial isomers and emit blue luminescence, which is different from the typical green emissions of α-Alq$_3$. Second, we fabricate organic light-emitting diodes (OLEDs) from different crystals as source powders; i.e., from 1) α-Alq$_3$, 2) δ-Alq$_3$, and 3) a mixture of α-, γ-, and δ-Alq$_3$. All the OLEDs exhibit green electroluminescence with almost the same maximum wavelength, suggesting that some facial isomers become meridional while Alq$_3$ is in the gas phase. In contrast, electroluminescence efficiency depends on the Alq$_3$ crystalline polymorph; the OLED fabricated from the mixture of α-, γ-, and δ-Alq$_3$ has up to 1.4 times the efficiency of the OLED fabricated from α-Alq$_3$ for the same device structure.

Visible-Light-Induced Living Radical Polymerization with Organic Catalysts

A photo-induced living radical polymerization (photo-LRP) using organic catalysts was developed. It is among the most simple and robust photo-LRPs, as it uses iodine as a capping agent and the catalysts are such common compounds as tributylamine. Under visible-light-irradiation at 350-600 nm, the polymer molecular weight and its distribution ($M_w/M_n = 1.1$–1.4) were well controlled for methyl methacrylate and some functional methacrylates up to fairly high conversions in many cases. Perfectly no polymerization took place without photo-irradiation, meaning that the system is an ideal polymerization switched “on” and “off” by external photo-stimulus. The polymerization rate was also finely tunable by the external irradiation power. The uses of inexpensive compounds and visible light, good polydispersity control, good tolerance to functional groups, and fine response to external photo-irradiation may be useful features of this system.

Figure 1. Current efficiency-current density characteristics of OLEDs fabricated from α-Alq$_3$, δ-Alq$_3$, and the mixture of α-, γ-, and δ-Alq$_3$.

Figure 2. Schematic illustration of photo-LRP using iodine as a capping agent and tributylamine as a catalyst, and first-order-plot of monomer concentration (monomer conversion index) for temporal control by external visible-light-irradiation.