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Convex clustering is an attractive clustering
algorithm with favorable properties such as
efficiency and optimality owing to its convex
formulation. It is thought to generalize both k-means
clustering and agglomerative clustering. However, it
is not known whether convex clustering preserves
desirable properties of these algorithms. A common

Convex Clustering Formulation
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o If u; = u; then group x;, x; into a cluster.

expectation is that convex clustering may learn
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Solutions: good or bad? / \ \,
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- Can it learn optimal and efficient nonconvex clusters? [l
- What cluster shapes can it learn? 4 )
Convex clustering solutions with different cluster sizes
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Main results: we proved that ! g
- Convex clustering can only learn convex clusters 01 . 1 . T 1 .
- Different from agglomerative clustering.
- Similar to k-means clustering. -10 0 -10 o0 -10 0 -0 o0
- Having bounding balls with significant gaps (circular shapes) 5 ] ] = ]
- Different from k-means clustering (Voronoi cells), no gap. 0. ] | e | o
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