Sparse Learning on Hypergraphs

Canh Hao Nguyen & Hiroshi Mamitsuka canhhao@kuicr.kyoto-u.ac.jp

- Hypergraph represents high-order relationships
- We wish to learn a smooth function with respect to its topology.
- We show a general framework of all smoothness functions.
- It helps analyzing previously proposed smoothness functions and proposing new ones.
- From this, we address the problem of noisy nodes and irrelevant hyperedges in hypegraphs by new sparsely smooth formulations.
- The formulations show statistical consistency and high performance

Examples

- All proteins complexes (set of proteins)
- Pathways (set of genes)

General framework of all smoothness functions on hypergraphs	$sh(f) = T_e(t_{i,j\in e}s(f_i, f_j))$)

type	T	t	$s(f_i,f_j)$	sh(f)	-
graph	Σ		$(f_i - f_j)^2$	$f^T L f$: graph Laplacian (Chung, 1993)	-
graph	\sum		$ f_i - f_j ^p$	$\langle f, \Delta_p f \rangle$: p-Laplacian (Bühler and Hein, 2009)	
graph	\sum		$ f_i - f_j ^{p \to \infty}$	Lipschitz extension (lex-minimizer) (Kyng et al., 2015)	
graph	max	•	$ f_i - f_j $	Lipschitz extension (inf-minimizer) (Kyng et al., 2015)	
hypergraph	\sum	\sum	$(f_i - f_j)^2$	$f^T L f$ of clique/star expansion (Agarwal et al., 2006)	
hypergraph	\sum	\sum	$ f_i - f_j $	clique expansion + 1-Laplacian	
hypergraph	\sum	max	$ f_i - f_j $	total variation (Hein et al., 2013)	New
hypergraph	max	max	$ f_i - f_j $	inf-minimizer + star/clique expansion	formulation
hypergraph	\max	Σ	$ f_i - f_j $	max hyperedge smoothness	
hypergraph	any	$(\sum \cdot)^{rac{1}{p}}$	$ f_i - f_j ^p$	within-hyperedge l_p norm	
hypergraph	$(\sum \cdot)^{\frac{1}{p}}$	any	$ f_i - f_j ^p$	between-hyperedge l_p norm	_

Sparsely smooth formulations: hyperedge selection, node selection and joint selection

