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Scope of Research

The research interests of this laboratory include the development of advanced
molecular transformation, total synthesis of biologically active products, and molecu-
lar recognition. Programs are active in the following areas: 1) organocatalytic site-
selective transformation of multi-functionalized molecules, 2) dirhodium-catalyzed
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site-selective C-H functionalization, 3) asymmetric induction in transformation of Suogzrcu R
compounds with molecular chirality, 4) total synthesis of glycoside-based natural product Natural Product

based on sequential site-selective functionalization.
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Topics

Seven-step Stereodivergent Total Syntheses of
Punicafolin and Macaranganin

Ellagitannins constitute one of the major classes of
hydrolysable tannins and more than 500 natural products
have been structurally characterized. Punicafolin (1) and
macaranganin (2), natural glycosides of an ellagitannins
family, are characterized by a 3,6-hexahydroxydiphenoyl
(HHDP) group bridged between C(3)-OH and C(6)-OH of
the glucose core. (Figure 1). They are stereoisomeric to each
other concerning the chiral axis of the HHDP moiety
and show different biological activities depending on the
chirality of the HHDP group. Although stereodivergent
synthesis of the HHDP groups is desirable for their straight-
forward total syntheses, construction of the 3,6-HHDP
group has been a synthetic challenge because a less stable
axial-rich 'C, conformer of the pyranose ring is required
for the formation. We achieved the first total syntheses of 1
and 2 in 7 steps, respectively from D-glucose. The prominent
features of the synthesis are; (1) sequential site-selective
introduction of the adequate galloyl groups into unprotected
D-glucose by a catalyst-controlled manner employing
originally developed organocatalysts C1 and C2, and (2)
stereodivergent construction of the 3,6-HHDP bridge by
oxidative phenol coupling of a common intermediate via a
ring flipping process of the glucose core. Because no pro-
tective groups were used for glucose throughout the pro-
cess, extremely short-step total syntheses were achieved.

Dirhodium-catalyzed Chemo- and Site-
Selective C-H Amination of Dialkylanilines

Development of methods for the construction of C-N
bonds is still of great synthetic importance in current synthetic
organic chemistry because C-N bonds are ubiquitously
involved in functional materials and bioactive molecules.
Especially, direct C-N bond formation through C-H bond
cleavage represents an attractive and efficient access to
such functional molecules. We recently reported a method
for dirhodium-catalyzed C(sp’)-H amidation of N,N-
dimethylanilines (Figure 2). Chemo- and site-selective
C(sp*)-H amidation of N-methyl group proceeded exclu-
sively in the presence of C(sp?)-H bonds of the electron-
rich aromatic ring and secondary, tertiary, and benzylic
C(sp*)-H bonds a to a nitrogen atom. The protocol was
successfully applied to a two-step demethylation process
of' a N-methylaniline derivative.
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Figure 2. Chemo- and site-selective C-H amination and application to
de-methylation.
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Figure 1. Total synthesis of punicafolin and macaranganin.
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