International Research Center for Elements Science - Organotransition Metal Chemistry -

http://om.kuicr.kyoto-u.ac.jp

Prof OZAWA, Fumiyuki (D Eng)

Assist Prof WAKIOKA, Masayuki TAKEUCHI, Katsuhiko CHANG, Yung-Hung (D Eng)

Assist Prof (D Sc)

PD (D Eng)

Assist Res Staff

NAKAMURA-OGATA, Yuki

Researcher(pt)

ICHIHARA, Nobuko

Students

ISHIKI, Satoru (M2) TAGUCHI, Hiro-omi (M2) IIZUKA, Eisuke (M1)

TANIGAWA, Ippei (M1) SASAKI, Daichi (UG) TAKAHASHI, Rina (UG)

Scope of Research

This laboratory aims at establishment of new synthetic methodologies and new functional materials by designing welldefined catalysts based on transition metal chemistry. New concepts and ideas of molecular-based catalysts are accumulated by mechanistic investigations using experimental methods such as spectroscopy and kinetic techniques as well as theoretical

methods. The research subjects include: (1) development of novel organotransition metal systems for catalysis based on precise ligand design, and (2) preparation of π -conjugated polymers by using direct arylation.

KEYWORDS

Transition Metal Complex Homogeneous Catalyst Reaction Mechanism Low-coordinate Phosphorus Ligand π -Conjugated Polymer

Selected Publications

Lin, Y.-F.; Ichihara, N.; Nakajima, Y.; Ozawa, F., Disproportionation of Bis(phosphaethenyl)pyridine Iron(I) Bromide Induced by tBuNC, Organometallics, (in press).

Wakioka, M.; Nakamura, Y.; Hihara, Y.; Ozawa, F.; Sakaki, S., Effects of PAr3 Ligands on Direct Arylation of Heteroarenes with Isolated $[Pd(2.6-Me_3C_6H_3)(\mu-O_2CMe)(PAr_3)]_4$ Complexes, Organometallics, **33**, 6247-6252 (2014).

Takeuchi, K.; Minami, A.; Nakajima, Y.; Ozawa, F., Synthesis and Structures of Nickel Complexes with a PN-Chelate Phosphaalkene Ligand, Organometallics, 33, 5365-5370 (2014).

Lin, Y.-F.; Nakajima, Y.; Ozawa, F., Reduction of an Fe(I) Mesityl Complex Induced by π-Acid Ligands, Dalton Trans., 43, 9032-9037 (2014). Chang, Y.-H.; Nakajima, Y.; Tanaka, H.; Yoshizawa, K.; Ozawa, F., Mechanism of N-H Bond Cleavage of Aniline by a Dearomatized PNP-Pincer Type Phosphaalkene Complex of Iridium(I), Organometallics, 33, 715-721 (2014).

Wakioka, M.; Ichihara, N.; Kitano, Y.; Ozawa, F., A Highly Efficient Catalyst for the Synthesis of Alternating Copolymers with Thieno[3,4-c] pyrrole-4,6-dione Units via Direct Arylation Polymerization, Macromolecules, 47, 626-631 (2014).

Mechanism of N–H Bond Cleavage of Aniline by a Dearomatized PNP-Pincer Type Phosphaalkene Complex of Iridium(I)

Detailed mechanistic investigations using kinetic and theoretical methods have been conducted for deprotonative N-H bond cleavage of p-YC₆H₄NH₂ (Y = H, MeO, Me, Cl, Br, NO₂) by $[K(18\text{-crown-6})][Ir(Cl)(PPEP^*)]$ (1a) bearing a dearomatized PNP-pincer type phosphaalkene ligand (PPEP*) to afford $[Ir(NHC_6H_4Y)(PPEP)]$ (2) with an aromatized ligand (PPEP). While 1a is in equilibrium with [K(18-crown-6)]Cl (3) and [Ir(PPEP*)] (4) in solution, the N-H bond cleavage proceeds via association of 1a with aniline, where the coordination of aniline to iridium is insignificant; instead, aniline is associated with PPEP* by hydrogen bonding. In contrast, the N-H bond cleavage of ammonia proceeds via the pentacoordinate intermediate [Ir(Cl)(NH₃)(PPEP*)]. The difference between the N-H bond cleavage processes of aniline and ammonia is examined by DFT calculations.

Scheme 1. Mechanism of N-H bond cleavage of aniline by [Ir(Cl)(PPEP*)]-.

Reduction of an Fe(I) Mesityl Complex Induced by π-Acid Ligands

Treatment of the Fe(I) mesityl complex [Fe(Mes) (BPEP-Ph)] (BPEP-Ph = 2,6-bis[1-phenyl-2-(2,4,6-tritert-butylphenyl)-2-phosphaethenyl]pyridine) with π -acid ligands (L = CO, RNC) leads to one-electron reduction via Mes group migration from Fe to P, followed by homolytic elimination of the 2,4,6-tBu₃C₆H₂ group, to afford Fe(0) complexes of the formula [Fe(L)₂(BPEP-Ph*)] (BPEP-Ph* =2-[1-phenyl-2-mesityl-2-phosphaethenyl]-6-[1-phenyl-2-(2,4,6-tri-tert-butylphenyl)-2-phosphaethenyl]pyridine). This reduction process is supported by radical trapping experiments and theoretical studies. The 2,4.6-tBu3C₆H₂• radical is captured by 2,2,6,6-tetramethylpiperidine-1oxyl (TEMPO) in high yield. DFT calculations reveal the mechanism of Mes group migration with a reasonable energy profile.

Scheme 2. One-election reduction process of [Fe(Mes)(BPEP-Ph)] induced by isocyanides.

Effects of PAr₃ Ligands on Direct Arylation of Heteroarenes with Isolated [Pd(2,6-Me₂C₆H₃) (μ-O₂CMe)(PAr₃)]₄ Complexes

The palladium-catalyzed direct arylation of heteroarenes with aryl halides has attracted considerable attention as a simple cross-coupling process. It is generally accepted that this catalysis proceeds via an arylpalladium carboxylate intermediate. In this study, we investigated the ligand effects on reactivity of arylpalladium acetates (1a-d) (Scheme 3). While **1a-d** have a tetrameric form in the solid state, they are in rapid equilibrium with the monomeric species $[Pd(2,6-Me_2C_6H_3)(O_2CMe-\kappa^2O)(PAr_3)]$ (2a–d) in solution. Complexes 1a-d react with thiophene 3 in THF at 65 °C to give the direct arylation product (4) in high yields. The reaction is accelerated by electron-deficient PAr_3 (1b < 1a < 1c < 1d). The ligand effects are also examined by DFT calculations. Unlike the general assumption, the C-H bond cleavage process is relatively insensitive to electronic properties of PAr₃ ligands. Instead, the reaction of 2 invokes the C-C reductive elimination process as the ratedetermining step, and the activation energy is significantly reduced by electron-deficient ligands.

Scheme 3. Ligand effects on direct arylation of 2-methylthiophene with arylpalladium acetate complexes.