Division of Synthetic Chemistry - Structural Organic Chemistry -

http://hydrogen.kuicr.kyoto-u.ac.jp/K_eHP_F/main.html

Assoc Prof MURATA, Yasujiro (D Eng)

Assist Prof MURATA, Michihisa (D Eng)

PD KUROTOBI, Kei (D Sc)

Students

OCHI, Yuta (M2) KATO, Keisuke (M1)

Lecturer (pt)

KITAGAWA, Toshikazu (D Eng) Mie University

Scope of Research

Fundamental studies are being conducted for creation of new functional π -systems with novel structures and properties. The major subjects are: organo-chemical transformation of fullerenes C₆₀ and C₇₀, specifically organic synthesis of endohedral fullerenes by the technique of molecular surgery; generation of alkylated fullerene cations and their application for the synthesis of functional material; synthesis of new redox-active π -systems.

Research Activities (Year 2007)

Presentations

Fine Tuning of the Orifice Size: Synthesis and Properties of Selenium-Containing Open-Cage C_{60} , Murata Y, Chuang S-C, Murata M, Komatsu K, 211th Meeting of the Electrochemical Society, 7 May 2007, Chicago, USA.

Synthesis and Properties of Endohedral Open-Cage Fullerenes, Murata Y, The 2nd International Conference on Joint Project of Chemical Synthesis Core Research Institutions –Development of New Synthetic Methods and Creation of Functions–, 7 August 2007, Kyoto, Japan (invited).

The Outside Knows the Difference Inside: Trapping Helium by Immediate Reduction of Orifice Size of an Open-cage Fullerene and NMR Investigations of the Effect of Encapsulated Helium and Hydrogen to the Proton Directly Attached to the Open-cage Fullerene Sphere, Chuang S-C, Murata Y, Komatsu K, The 234th ACS National Meeting, 22 August 2007, Boston, USA.

Grants

Murata Y, PRESTO, Japan Science and Technology Agency, 1 October 2005–31 March 2009.

Murata Y, Grant-in-Aid for Scientific Research on Priority Areas, "Molecular Theory for Real Systems", 1 April 2007–31 March 2008.

Murata M, Grant-in-Aid for Young Scientists (B), 1 April 2007–31 March 2009.

An Orifice-Size Index for Open-Cage Fullerene

In the field of open-cage fullerenes, there was a lack of a universal standard that could correlate and quantify the orifice size of open-cage fullerenes. We estimated the corresponding effective areas A(area) for orifices of open-cage fullerenes by matching calculated activation energies Ea(calcd) for hydrogen release from open-cage fullerenes to the computed energies required for a hydrogen molecule passing through a cyclo[n] carbon ring. Then we defined an index K(orifice) based on experimental hydrogen release rate, where $K(orifice) = \ln k/k^{\circ}$ (k is rate constant of hydrogen-release rate of any open-cage fullerenes taken for comparison at 160 °C; k° is the hydrogen release rate from the standard compound). A correlation of the index K(orifice) with the effective areas A(area)showed a good linear fit that demonstrated a good interplay between experiment and theory.

Figure 1. Correlation of the orifice-size index K with the effective area of orifice A(area) for open-cage fullerenes.

Communication of H₂ inside C₆₀ with the Outside World

The quenching rate constants of singlet oxygen by C_{60} , $H_2@C_{60}$, $D_2@C_{60}$, H_2 , and D_2 in solution were measured. The presence of a hydrogen ($H_2@C_{60}$) or deuterium ($D_2@C_{60}$) molecule inside the fullerene did not produce any observable effect based on triplet lifetime or EPR measurements. However, a remarkable effect was found for the ${}^{1}O_2$ quenching by C_{60} , $H_2@C_{60}$, $D_2@C_{60}$, H_2 , and D_2 . Singlet oxygen was generated by photo sensitization or by thermal decomposition of naphthalene endoperoxide derivatives. The comparison of the rate constants for quenching of ${}^{1}O_2$ by $H_2@C_{60}$ and $D_2@C_{60}$ demonstrate a significant vibrational interaction between oxygen and H_2 inside the fullerene. The quenching rate constant for H_2 is one order of magnitude higher than that of D_2 , in agreement with the results observed for the quenching of ${}^{1}O_2$ with $H_2@C_{60}$ or $D_2@C_{60}$.

Figure 2. Singlet Oxygen quenching by H2@C60 and C60.

The Outside Knows the Difference Inside

The size of orifice on open-cage fullerene 1 with a 13-membered ring was reduced to an 11-membered ring by reduction of the carbonyl group. This reaction can be used to entrap a He atom inside the fullerene cage by applying toward He@1. Interestingly, the chemical shifts of the methine protons in empty 2, He@2, and H₂@2 were dependent on the encapsulated species inside the cage. The 'H NMR spectrum of the mixture of He@2 and empty 2 showed two signals with a difference of 0.36 Hz. This notion suggested that the non-covalent interaction between helium and fullerene cage does exist. Furthermore, a clear downfield-shift of 1.9 Hz was observed for the methine proton signal of $H_2(a)$ as compared to that of empty 2. The observed difference suggested that the encapsulated hydrogen molecule interacts more with the cage than helium.

Figure 3. Synthesis of compound 2 and He@2