
TOPICS  AND  INTRODUCTORY  COLUMNS  OF  LAB O RA TO RIES64

Prof
MAMITSUKA, Hiroshi

(D Sc)

Assist Prof
TAKIGAWA, Ichigaku

(D Eng)

PD
WAN, Raymond

(Ph D)

PD
ZHU, Shanfeng

(Ph D)

Bioinformatics Center
- Pathway Engineering -

http://www.bic.kyoto-u.ac.jp/pathway/index.html

With the recent advance of experimental techniques in molecular biology and biochemistry, the research in modern life 
science is shifting to the comprehensive understanding of a biological mechanism carried out by a variety of biological 
molecules, including genes, proteins and chemical compounds. The focus of our laboratory is placed on such molecular 
mechanisms in biological phenomena, represented by biological networks such as gene regulatory networks, metabolic 
pathways and signal transduction pathways. They are graphs, trees and/or networks in a general computer science termi-
nology. The research objective of our laboratory is to develop computational techniques in computer science and/or statis-
tics to systematically analyze and understand the principles of such biological networks at the cellular and organism level.
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Mining Biomedical Co-occurrence Data with 
a Probabilistic Model

Mining literature for biomedical knowledge discovery 
has become a very active fi eld in bioinformatics recently. 
One of the important applications is to discover the rela-
tionship among genes, proteins, disease phenotype and 
chemical compounds. Co-occurrence in MEDLINE is a 
simple and popular technique for discovering possible 
biological relationships among different entities. This 
technique is based on the following hypothesis: if biologi-
cal entity A co-occurs with biological entity B in the same 
MEDLINE record, A and B should be biologically related 
with high probability. Here we also employ co-occurrence 
technique to identify biologically related genes and chemi-
cal compounds. We focus on discovering implicit related 
entities, e.g. “chemical compound - gene”, being those 
which are not in existing co-occurrences in the literature 
but could be discovered from the co-occurrence data.

We made use of a probabilistic model, which we call a 
mixture aspect model (MAM), coupled with an effi cient 
algorithm for estimating its parameters. MAM is an exten-
sion of a probabilistic model, called the aspect model (AM) 
developed in natural language processing, with one sig-
nifi cant difference of the ability of incorporating different 
types of co-occurrence data effi ciently. A MAM is called 
kMAM when we use k different types of co-occurrence 
data, and 1MAM is equal to AM.

We evaluated our approach by performing experiments 
on three types of co-occurrence data: gene-gene (GG), 
compound-compound (CC) and compound-gene (CG) 
from the MEDLINE records. We extract these data from 
RefSeq database and corresponding MEDLINE records. 
In our dataset, we have 22,292 genes and 3,454 chemi-
cal compounds. There are altogether 174,077 GG pairs, 
20,443 CC pairs and 47,217 CG pairs occurring in 63940 
MEDLINE documents.

We evaluated the performance of four different types 
of MAMs, i.e. AM, 2MAM (+CC), 2MAM (+GG) and 
3MAM, using cross-validation on predicting CG pairs. 
AM uses CG only in training while 2MAM (+CC) uses 
both CG and CC, and 2MAM~(+GG) uses both CG and 
GG. 3MAM uses all CG, CC and GG. To examine the ef-
fect of the size of the training data set to the performance 
of the probabilistic model, we set fi ve different ratios of 
the size of training to test data, 3:1, 2:1, 1:1, 1:2 and 1:3, in 
the cross-validation experiment.  We carried out 50 rounds 
of this cross-validation to reduce possible biases occurring 
in only a few rounds and averaged the results obtained. 
When we add another type of training data, keeping the 
same training CG pairs for each round of cross-validation, 

we added one or more other types of co-occurrence data to 
train 2MAM (+CC), 2MAM (+GG) or 3MAM. Then, the 
prediction was performed on the same test dataset. We note 
that AM cannot make any predictions on a CG pair in the 
test data if one component of this pair does not appear in 
the training data. Thus, we removed all such co-occurrence 
pairs in the test data, and the remaining pairs were used 
as positive test examples. We then randomly generated 
the same number of CG pairs which are not found in both 
training and test as negative test examples.

Once we estimated the probability parameters of a 
probabilistic model from training data, we computed the 
likelihood of each CG pair in test data and ranked all pairs 
according to their likelihoods. We evaluated these ranked 
pairs in AUC (Area Under the ROC curve). Please note 
that the larger the AUC, the better the performance of the 
model. We further used the paired sample two-tailed t-test 
to statistically evaluate the performance difference of the 
two models. Table 1 shows the results.

We also computed the likelihoods of all unknown CG 
(more specifically, drug-gene) pairs using our approach 
and selected the top 20 pairs according to the likelihoods. 
Table 2 shows the 20 pairs. We validated them from bio-
logical, medical and pharmaceutical viewpoints.

Table 1. Percentage of the AUCs and the t-values (in parentheses) ob-
tained by 50 rounds of cross-validation on compound-gene pairs.

Table 2. Top 20 pairs of drugs and genes.




